A note on the well-posedness of control complex Ginzburg-Landau equations in Zhidkov spaces

dc.contributor.author Besteiro, Agustín Tomás
dc.date.accessioned 2023-02-14T13:35:49Z
dc.date.available 2023-02-14T13:35:49Z
dc.date.issued 2022
dc.description.abstract In this note, we consider the Complex Ginzburg-Landau equations with a bilinear control term in the real line. We prove well-posedness results concerned with the initial value problem for these equations in Zhidkov spaces using splitting methods.
dc.identifier.citation Besteiro, A. (2022). A note on the well-posedness of control complex Ginzburg-Landau equations in Zhidkov spaces. En: Trends in Computational and Applied Mathematics 23(3):539-547
dc.identifier.other DOI: https://doi.org/10.5540/tcam.2022.023.03.00539
dc.identifier.uri https://repositorio.uai.edu.ar/handle/123456789/952
dc.language.iso en
dc.publisher Brazilian Society of Applied and Computational Mathematics (SBMAC)
dc.subject well-posedness
dc.subject Zhidkov spaces
dc.subject Lie-Trotter method
dc.title A note on the well-posedness of control complex Ginzburg-Landau equations in Zhidkov spaces
dc.type ARTICULO
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Besteiro, A. (2022). “A Note on the Well-Posedness of Control Complex Ginzburg-Landau Equations in Zhidkov Spaces”. Trends in Computational and Applied Mathematics, 23(3), 539-547. Doi:https://doi.org/10.5540/tcam.2022.023.03.00539
Size:
203.34 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: