Polynomial Complex Ginzburg-Landau equations in almost periodic spaces
Polynomial Complex Ginzburg-Landau equations in almost periodic spaces
dc.contributor.author | Besteiro, Agustín Tomás | |
dc.date.accessioned | 2023-02-14T13:35:55Z | |
dc.date.available | 2023-02-06T10:58:50Z | |
dc.date.available | 2023-02-14T13:35:55Z | |
dc.date.issued | 2022-11-11 | |
dc.description.abstract | We consider complex Ginzburg-Landau equations with a polynomial non- linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases. | |
dc.identifier.citation | Besteiro, A. (2023). Polynomial Complex Ginzburg-Landau equations in almost periodic spaces. En: Communications in Mathematics 31(1):91-101 | |
dc.identifier.other | DOI: https://doi.org/10.46298/cm.10279 | |
dc.identifier.uri | https://repositorio.uai.edu.ar/handle/123456789/870.2 | |
dc.language.iso | en | |
dc.publisher | EPIsciences | |
dc.subject | well-posedness | |
dc.subject | almost periodic spaces | |
dc.subject | Lie-Trotter method | |
dc.title | Polynomial Complex Ginzburg-Landau equations in almost periodic spaces | |
dc.type | ARTICULO |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Agustin Besteiro (2022). “Polynomial Complex Ginzburg-Landau equations in almost periodic spaces”. URL: https://cm.episciences.org/10279. DOI: 10.46298/cm.10279. Communications in Mathematics. Volume 31 (2023). Issue: 1
- Size:
- 318.68 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: