Polynomial Complex Ginzburg-Landau equations in almost periodic spaces

dc.contributor.author Besteiro, Agustín Tomás
dc.date.accessioned 2023-02-14T13:35:55Z
dc.date.available 2023-02-06T10:58:50Z
dc.date.available 2023-02-14T13:35:55Z
dc.date.issued 2022-11-11
dc.description.abstract We consider complex Ginzburg-Landau equations with a polynomial non- linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.
dc.identifier.citation Besteiro, A. (2023). Polynomial Complex Ginzburg-Landau equations in almost periodic spaces. En: Communications in Mathematics 31(1):91-101
dc.identifier.other DOI: https://doi.org/10.46298/cm.10279
dc.identifier.uri https://repositorio.uai.edu.ar/handle/123456789/870.2
dc.language.iso en
dc.publisher EPIsciences
dc.subject well-posedness
dc.subject almost periodic spaces
dc.subject Lie-Trotter method
dc.title Polynomial Complex Ginzburg-Landau equations in almost periodic spaces
dc.type ARTICULO
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Agustin Besteiro (2022). “Polynomial Complex Ginzburg-Landau equations in almost periodic spaces”. URL: https://cm.episciences.org/10279. DOI: 10.46298/cm.10279. Communications in Mathematics. Volume 31 (2023). Issue: 1
Size:
318.68 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Version History

Now showing 1 - 2 of 2
Version Editor Date Summary
2 *
2023-02-14 10:35:51
new_version
1
2023-02-06 07:58:50
* Selected version