Polynomial Complex Ginzburg-Landau equations in almost periodic spaces

dc.contributor.author Besteiro, Agustín Tomás
dc.date.accessioned 2023-11-21T17:52:22Z
dc.date.available 2023-11-21T17:52:22Z
dc.date.issued 2023
dc.description.abstract We consider complex Ginzburg-Landau equations with a polynomial non-linearity in the real line. We use splitting-methods to prove well-posedness for a subset of almost periodic spaces. Specifically, we prove that if the initial condition has multiples of an irrational phase, then the solution of the equation maintains those same phases.
dc.identifier.citation Besteiro, A. (2023). Polynomial Complex Ginzburg-Landau equations in almost periodic spaces. In: Communications in Mathematics 31(1):91-101
dc.identifier.other https://doi.org/10.46298/cm.10279
dc.identifier.uri https://repositorio.uai.edu.ar/handle/123456789/2012
dc.language.iso en
dc.publisher EPISciences
dc.subject mathematics
dc.subject analysis of PDEs
dc.subject 47J35
dc.subject 35K55
dc.subject 35K58
dc.title Polynomial Complex Ginzburg-Landau equations in almost periodic spaces
dc.type ARTICULO
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Agustin Besteiro - Polynomial Complex Ginzburg-Landau equations in almost periodic spaces cm:10279 - Communications in Mathematics, November 11, 2022, Volume 31 (2023), Issue 1 - https://doi.org/10.46298/cm.10279
Size:
318.68 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: