Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3

Thumbnail Image
Date
2022-12-30
Authors
Martínez, María Roxana
Vilaboa, Pablo Alfredo
Catala, Nelson
Journal Title
Journal ISSN
Volume Title
Publisher
Sociedad Argentina de Informática, SADIO
Abstract
Existe una tendencia a nivel general por el impulso de la apertura de datos públicos por parte de los gobiernos. Esto conlleva a que no sólo es fundamental para el crecimiento de los países, sino que, además, incrementa la transparencia gubernamental para con los ciudadanos, y, por otra parte, es una de forma de motivar a la utilización e implementación de la innovación tecnológica y a la participación ciudadana. El aporte de este trabajo de investigación conlleva a un relevamiento de los algoritmos de aprendizaje más relevantes en aspectos de aprendizaje supervisado como así también en un estudio general de las herramientas de machine learning más utilizadas en la actualidad. Como siguiente paso, este trabajo propone un análisis para la evaluación de algoritmos de aprendizaje de datos públicos abiertos, en este caso se toma en cuenta el estudio de un dataset público enfocado a enfermedades del corazón a nivel de salud. A través de la herramienta Orange se analizan los distintos algoritmos, y mediante una evaluación de testeo y puntuación (“Test and Score” y “Confusion Matrix”) se realiza la clasificación y ranqueo de los resultados arrojados para estos modelos según el criterio de mejor precisión en algoritmo.
Description
Keywords
machine learning, datos públicos abiertos, aprendizaje supervisado
Citation
Martínez, R.; Vilaboa, P.; Catala, N. (2022). Evaluación de algoritmos de aprendizaje con datos públicos abiertos de machine learning mediante Orange3. En: Memorias de las JAIIO 8(12):58-68