Optimización de carteras de inversión : un benchmark con modelos clásico, de computación cuántica y de hibridación AI /QC
Optimización de carteras de inversión : un benchmark con modelos clásico, de computación cuántica y de hibridación AI /QC
Files
Date
2021
Authors
Braña, Juan Pablo
Fernández, Alejandro
Litterio, Alejandra M. J.
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Chilecito
Abstract
La optimización de carteras de inversión representa un desafío para el inversor al momento de seleccionar la combinación correcta de acciones a efectos de maximizar los retornos esperados y minimizar los riesgos. Es así que en contraste con el paradigma de la computación tradicional, la computación cuántica no sólo acelera de manera sustancial el proceso de las computadoras tradicionales si no que optimiza la performance del método que determina cuáles acciones deben ser incluidas en las carteras de inversión y cuáles no. En este trabajo presentamos un estudio de comparación y referencia entre el resultado obtenido por tres diferentes metodologías de optimización de cartera: a) aproximación clásica, b) aproximación cuántica, c) un híbrido entre la aproximación cuántica incorporando criterios de Inteligencia Artificial. Para el primero de los casos utilizamos el modelo de Markowitz, el cual es un algoritmo clásico para determinar carteras eficientes, para nuestra aproximación cuántica hemos trabajado con un algoritmo de optimización cuántico llamado Variational Quantum Eigensolver (VQE) y por último hemos intentado mejorar este último criterio de optimización con un índice de sentimiento calculado con procesamiento de lenguaje natural (NLP) y una métrica de forecasting multivariado basado en Machine Learning.
Description
Keywords
computación cuántica,
procesamiento de lenguaje natural cuántico,
optimización de cartera de inversión,
finanzas,
machine learning,
artificial intelligence,
AI
Citation
Braña, J.P.; Litterio, A.M.J.; Fernández, A. (2021). Optimización de carteras de inversión : un benchmark con modelos clásico, de computación cuántica y de hibridación AI /QC. En: Workshop de Investigadores en Ciencias de la Computación, WICC. 23. 15-16 abr 2021, Chilecito, Argentina. Libro de actas. Chilecito : UNdeC. p.:139-143