A flexible and expressive formalism to specify metamorphic properties for BIG DATA systems validation

dc.contributor.author Asteasuain, Fernando
dc.date.accessioned 2023-07-25T17:57:56Z
dc.date.available 2023-07-25T17:57:56Z
dc.date.issued 2023-1
dc.description.abstract BIG DATA systems represent a huge challenge for software engineering validations tasks since they have been classified as "non testable". Metamorphic Relationships (MR) have been proposed as a technique to overcome this problem. These relationships establish interactions between data that can be used to validate the expected behavior of the system. However, the process of exploring and defining MRs is a very arduous one, and an expressive and flexible specification language is needed to denote them. In this work we show how the Feather Weight Visual Scenarios (FVS) framework can be seen as an appealing tool to specify MRs. We exploit FVS features to model complex MR interactions and analysis, allowing the possibility to perform non trivial operations between MRs such as refinement and consistency checking. FVS is shown in action by introducing a proof of concept example focused on a machine learning system over biology cell images.
dc.identifier.citation Asteasuain, F. (2022). A flexible and expressive formalism to specify metamorphic properties for BIG DATA systems validation. En: Congreso Argentino de Ciencias de la Computación, CACIC. 28. 3-6 oct 2022, La Rioja, Argentina. Libro de Actas. La Rioja : EUDELAR. p.:282-291
dc.identifier.uri https://repositorio.uai.edu.ar/handle/123456789/1541
dc.language.iso en
dc.publisher Universidad Nacional de La Rioja - EUDELAR
dc.subject formal verification
dc.subject Big Data
dc.subject metamorphic testing
dc.title A flexible and expressive formalism to specify metamorphic properties for BIG DATA systems validation
dc.type DOCUMENTOCONF
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fernando Asteasuain (2022). “A flexible and expressive formalism to specify Metamorphic Properties for BIG DATA systems validation”. XXVIII Congreso Argentino de Ciencias de la Computación (CACIC). Departamento de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de La Rioja, Argentina. 3 al 6 de Octubre de 2022.
Size:
6.87 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: