
V O L U M E T W E N T Y • I S S U E F O U R • S E P T E M B E R 2 0 1 8

Software Quality
Professional

www.asq.org

Data Governance Implementation:

Critical Success Factors

Rupa Mahanti

Critical Parameters for Successful

Process Automation

Sunil Kaushik

Certifying CMMI-DEV in the Context of

Model-Driven Software Engineering

Claudia Pons and Viviana Esterkin

Trust Concerns in Adoption of Cloud Services

in the Aerospace Sector in India

Subhas Chandra Misra, Ranjan Mishra, and

Aswani Kumar Munnangi

For more information about ASQ software quality offerings,
visit asq.org or call ASQ at 800-248-1946.

TRAINING AND BOOKS
TO ADVANCE YOUR CAREER

 Want to become a more signifi cant player in your profession? The training and books listed
below will make you more valuable to your current organization as well as the job market.

• Building Software Quality Skills

• Software Engineering Management

• Software Functional Testing and Test Management

• Software Quality Engineering

• Software Quality Engineering
Certifi cation Preparation

• Software Requirements Engineering

• The Certifi ed Software Quality
Engineer Handbook

• The Software Audit Guide

• Fundamental Concepts for the Software
Quality Engineer, Volume 2

TRAINING BOOKS

V O L U M E T W E N T Y • I S S U E F O U R • S E P T E M B E R 2 0 1 8

Contents
MISSION STATEMENT: Software Quality Professional

(SQP) is a peer-reviewed quarterly publication applying
quality principles to the development and use of software
and software-based systems.

It publishes case studies, experience-based reports, and
state-of-the-art reviews in order to provide practitioners
with an understanding of those software quality practices
that have proven effective in a wide range of industries,
applications, and organizational settings.

To enhance personal and professional growth, the
journal provides a forum for exchanging practical ideas
and experiences.

SQP constantly strives to improve the professionalism
of practitioners, the satisfaction of customers, and the well-
being of the larger society.

IDENTIFICATION STATEMENT: Copyright 2018 by ASQ.
SOFTWARE QUALITY PROFESSIONAL (ISSN 1522-0542) is
published quarterly (December, March, June, September)
by ASQ, 600 N. Plankinton Ave., P.O. Box 3005, Milwaukee,
WI 53201-3005. Periodicals postage paid at Milwaukee, WI.
Canadian GST #128717618. Back issues are available by
calling ASQ at 800-248-1946 (United States or Canada) or
414-272-8575 and are based on availability. ASQ members
$17 per copy; nonmembers $25 per copy.

Authorization to photocopy items for internal or
personal use is granted by SOFTWARE QUALITY PROFESSIONAL
provided that the fee of $1 per copy is paid to the
Copyright Clearance Center Inc., 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. Copying for purposes
other than internal or personal reference requires the
express permission of SOFTWARE QUALITY PROFESSIONAL.
For permission, contact Valerie Ellifson at ASQ, P.O. Box 3005,
Milwaukee, WI 53201-3005, or call 414-272-8575. To request
bulk reprints (100 or more) contact Barb Mitrovic at the
same address or phone number.

For microform, contact ProQuest Information and Learning,
300 N. Zeeb Road, Ann Arbor, MI 48106, 800-521-0600, ext.
2888, international 734-761-4700, www.proquest.com.

MANUSCRIPT REQUIREMENTS: Manuscripts should
be submitted to the manuscript coordinator as described
in the “Guidelines for Authors” on the SQP website at
www.asq.org. Material submitted to SQP must be the original
work of the authors, each of whom must have made a
substantive contribution to the work. Content must be
substantially different from other works previously published
or under review by another publication.

 POSTMASTER: Please send address changes to
SOFTWARE QUALITY PROFESSIONAL, ASQ, P.O. Box 3005,
Milwaukee, WI 53201-3005.

 No claim for missing issues will be accepted after
three months following the month of publication of the
issue for domestic addresses and six months for Canadian
and international addresses.

 Publication of advertisements does not constitute
endorse ment of any particular product or service by ASQ.

Printed in USA

ANNUAL SUBSCRIPTION RATES

ASQ Members Nonmembers Institutional

U.S. $58.00 $105.00 $195.00

International $90.00 $135.00 $249.00

Canadian $83.00 $135.00 $249.00

Rates subject to change without prior notification. Institutional rates
include first-class delivery. Canadian rates include 5% GST.

Institutional subscriptions are held in the name of a company, corporation,
government agency, or library.

www.asq.orgwww.asq.org

DEPARTMENTS

 2 Overview

 3 From the Editor

 61 Quality Nugget

 64 Resource Reviews

 66 Annual Indices

4 DATA MANAGEMENT

Data Governance Implementation:
Critical Success Factors
Rupa Mahanti

22 AUTOMATION

Critical Parameters for Successful
Process Automation
Sunil Kaushik

33 MATURITY MODELS

Certifying CMMI-DEV in the Context of
Model-Driven Software Engineering
Claudia Pons and Viviana Esterkin

46 CLOUD COMPUTING

Trust Concerns in Adoption of Cloud Services
in the Aerospace Sector in India
Subhas Chandra Misra, Ranjan Mishra, and

Aswani Kumar Munnangi

EDITOR-IN-CHIEF

Nicole Radziwill

Intelex Technologies

Toronto, Ontario

FOUNDING EDITOR

Taz Daughtrey

Lynchburg, Virginia

ASSOCIATE EDITORS

Fernando Brito e Abreu

University Institute of Lisbon

Portugal

John Franklin Arce

XPERTIA Chile Spa, Brazil

Rupa Mahanti

Tata Consultancy Services

Patricia McQuaid

California Polytechnic

State University

San Luis Obispo, California

Malcolm L. Stiefel

M. L. Stiefel & Co.,

Lowell, Massachusetts

Dave Zubrow

Software Engineering Institute,

Carnegie Mellon University

PUBLISHER

Seiche Sanders

MANUSCRIPT COORDINATOR

Valerie Ellifson

COPY EDITORS

Leigh Ann Klaus

Melissa McNulty

CREATIVE SERVICES MANAGER

Cathy Milquet

GRAPHIC DESIGNER

Mary Uttech

CREATIVE DESIGN SPECIALIST

Julie Wagner

Software Quality
Professional

E D I T O R I A L / P R O D U C T I O N

2 SQP VOL. 20, NO. 4/© 2018, ASQ

This issue begins with Rupa Mahanti in “Data Governance

Implementation: Critical Success Factors.” Data governance,

which encompasses all practices associated with ensuring high-quality

data assets through all stages of the data’s life at a particular organi-

zation, is a key element of modern quality management. This article

contributes to the understanding of data governance by summarizing

the critical success factors in the literature, and then examining them

in the context of expert interviews. Based on the findings, the author

recommends three priorities for organizations instituting a data gover-

nance program that will enhance the potential for success.

Next, we feature “Critical Parameters for Successful Process

Automation” by Sunil Kaushik. This article examines the

context surrounding robotic process automation (RPA) imple-

mentations, which, despite the name, does not require an

investment in industrial robots! RPA covers any process auto-

mation task where software is used to replicate the actions of a

human. Because RPA can reduce labor requirements, and thus

the overall cost of running a process, it is an attractive invest-

ment option for managers and executives. Understandably,

not all workers are enthusiastic about being made redundant

by technology. By surveying 32 managers in 26 organizations

(who had 164 RPA projects to their collective credit), Kaushik

explores the issues involved with RPA, and develops a validated

checklist that organizations can use to help them plan more

successful RPA projects—for everyone.

Claudia Pons and Viviana Esterkin contribute “Certifying CMMI-DEV

in the Context of Model-Driven Software Engineering,” an examina-

tion of the relationship between the CMMI-DEV maturity model and

50 “good practices” of model-driven software engineering (MDE). This

article is useful for anyone who wants to understand MDE better, or

organizations that may be considering MDE but would like to know how

(and to what extent) it can help them along their CMMI-DEV journey.

Subhas Chandra Misra, Ranjan Mishra, and Aswani Kumar Munnangi

present our final full-length article in this issue, “Trust Concerns in

Adoption of Cloud Services in the Aerospace Sector in India.” This

study explores why the adoption of cloud-based software systems has

been sluggish in a critical sector of India’s economy. The authors survey

124 leaders in this area regarding technological, organizational, and

environmental factors related to cloud service adoption. Using a struc-

tural equation model, they relate these factors to trust and success, and

uncover lessons that can be applied to new adoptions.

Finally, we present a Quality Nugget by Bud Glick, “A Primer on Cost

of Quality (CoQ).” Cost of quality can be a powerful way to critically

examine the distribution of resources in activities related to preventive

measures, appraisal and review, resolving internal failures, and address-

ing external failures (which have the highest impact).

Ov
er

vie
w

From theEditor EDITORIAL REVIEW BOARD

Jonathan D. Addelston

UpStart Systems LLC
Reston, Virginia

Greg Anderson

Brigham Young
University
Provo, Utah

J. David Blaine

Independent
Consultant
San Diego, California

Leo Clark

CMPIC

François Coallier

École de technologie
supérieure
Montréal, Québec,
Canada

Carol A. Dekkers

Quality Plus
Technologies Inc.
Seminole, Florida

Alec Dorling

Impronova AB
Sweden

Scott Duncan

Agile Software
Qualities

Uma Ferrell

The MITRE Corp.
McLean, Virginia

Eva Freund

The IV&V Group, Inc.

Karol Frühauf

INFOGEM AG
Baden, Switzerland

Phil LaPlante

Pennsylvania State
University

Paulo Lopes

Military Institute of
Engineering

Jason Pryde

John F. Kennedy
School of Government
Harvard University
Cambridge,
Massachusetts

Prem Ranganath

QuintilesIMS

Stephen Sheng

QES, Inc.

Carla Sivak

Portal Instruments

Daniel Zrymiak

Accenture

www.asq.org 3

This issue of SQP has the broad theme of success factors—what

can practitioners do to make implementations of software and

software-intensive systems more successful? Each of the articles

presented in this installment examines the academic and practi-

tioner literature for guidance, and then examines these findings

in the contexts of surveys and expert interviews. The end result

is a portfolio of recommendations spanning the topics of data

governance, robotic process automation, model-driven software

engineering, and cloud services.

We are still seeking articles to round out the December 2018

and March 2019 issues of SQP, particularly on software develop-

ment to support the transition to ISO 9001:2015, the General

Data Protection Regulation (GDPR) in the European Union, the

updated requirements of IATF 16949, FDA regulations, the Food

Safety Modernization Act (FSMA), or any other major shift in

quality management that involves software, software quality, or

data management and data quality.

Please email me if you would like to discuss opportunities to

share your work. We welcome new authors and new contributors.

For more experienced authors, we’re ready to help you get that

manuscript that’s been languishing on your hard drive out into

the world! Contact us to let us know how we can help.

nicole.radziwill@gmail.com

www.asq.org 33

Model-driven software engineering (MDE) is

being positioned as an alternative to con-

ventional methods of software production.

Given that MDE is an emerging paradigm,

standards for measuring its quality have not

yet been established. This article analyzes

MDE good practices and how they relate to

CMMI-DEV 1.3 Level 2. MDE best practices

were assessed to determine whether they

support each CMMI Level 2 specific practice

in seven of the 22 process areas: config-

uration management, supplier agreement

management, requirement management,

process and product quality assurance, mea-

surement and analysis, project monitoring

and control, and project planning. An expert

panel of five software engineering profes-

sionals offered consulting services to provide

an initial evaluation of the results. For each

process area, the percentage of practices

supported by MDE was determined and

recommendations to enhance MDE support

were identified. Although further research

is needed, this suggests that an organization

that uses MDE can certify at CMMI-DEV 1.3

Level 2.

KEY WORDS

Capability Maturity Model, CMMI-DEV 1.3,

model-driven engineering (MDE), quality

assessment

M A T U R I T Y M O D E L S

Certifying
CMMI-DEV in
the Context of
Model-Driven

Software
Engineering

CLAUDIA PONS AND VIVIANA ESTERKIN

INTRODUCTION
Model-driven software engineering (MDE) (Brambilla, Cabot, and

Wimmer 2012; Stahl and Voelter 2006) has been proposed as an

alternative to more conventional methods of software produc-

tion. It presents a new way of understanding development and

maintenance of software systems by using models as the primary

artifacts in the development process. In MDE, the models are used

to direct tasks related to comprehension, design, construction,

tests, deployment, operation, management, maintenance, and

modification of systems. Several examples of the successful

introduction of MDE have been provided by Di Ruscio, Paige,

and Pierantonio (2014) and Object Management Group (2015),

who report on the existing use of tools that make this approach

real in industry today.

The Capability Maturity Model (CMMI) (SEI 2010) is defined

as the integration of a set of models for evaluation, and improve-

ment of the processes for the development, maintenance, and

operation of systems. It provides guidelines for applying a group

of best practices to these processes. It is managed by the Software

Engineering Institute (SEI) from Carnegie Mellon University, and

is considered the de-facto standard to evaluate quality of software

system development practices. It consists of five maturity levels

that indicate the sophistication reached by the organization in its

software development processes, from Level 1 (initial) to Level 5

(optimizing). Additionally, the maturity levels can be used to assess

organizational improvement relative to one of 22 process areas.

34 SQP VOL. 20, NO. 4/© 2018, ASQ

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

in its software development processes. The maturity

levels describe an evolutionary path that an organization

that wants to improve its processes to develop products

or services can employ. The five maturity levels are

designated as follows:

• Level 1: Initial. At maturity level 1, the

organization does not provide a stable

environment to support processes. Although

the appropriate engineering techniques may

be used, efforts can be weakened by a lack of

formal plans. The results of a project can be

unpredictable.

• Level 2: Managed. At maturity level 2,

organizations provide institutionalized practices

of project management, with basic metrics and

reasonable follow-up of quality performance.

• Level 3: Defined. At maturity level 3, in

addition to good project management, the

organization provides appropriate coordination

procedures among groups, staff training, more

detailed engineering techniques, and more

advanced metrics for processes.

• Level 4: Quantitatively managed. At maturity

level 4, the organization provides a set of

significant quality and productivity metrics

and uses its quality system systematically for

decision making and risk management.

• Level 5: Optimizing. At maturity level 5, the

whole organization is devoted to continual

improvement of the processes. Metrics are

intensively used and the innovation process is

actively managed.

A process area is defined as a set of related practices

that, when implemented collectively, satisfies a set of

goals considered important for making improvements

in that area.

Model-Driven Software
Engineering
MDE is an approach to software development that uses

models as primary artifacts, from which code, documenta-

tion, and tests are derived (Brambilla, Cabot, and Wimmer

2012). MDE proposes the solution of current software

development problems by using a framework ensuring

portability, interoperability, platform independence,

and productivity. Moreover, model-driven architecture

The aim of the authors’ study is to identify the support

that MDE gives to CMMI-DEV Level 2. To this end, the

seven process areas associated with Level 2 are analyzed

and described in terms of specific practices, that when

implemented, are projected to satisfy their goals. The

seven areas are:

1. Configuration Management (CM)

2. Supplier Agreement Management (SAM)

3. Requirements Management (REQM)

4. Process and Product Quality Assurance

(PPQA)

5. Measurement and Analysis (MA)

6. Project Monitoring and Control (PMC)

7. Project Planning (PP)

Given that MDE is an emerging paradigm, standards

for measuring the quality of its applications have not been

established yet. This article provides a contribution in this

regard, analyzing MDE good practices in relation to a well-

established quality evaluation model. In particular, this

article summarizes 50 “good practices” of MDE identified

by the literature and relates them to the specific practices

in CMMI-DEV 1.3 Level 2, to help practitioners understand

how the two approaches compare to each other.

This article is organized as follows: a) MDE “good

practices” proposed by the literature are outlined; b)

MDE content is analyzed to determine whether MDE

provides support to the specific practices defined by

CMMI-DEV 1.3 Level 2 in the process areas that cor-

respond to that level; c) preliminary validation of results

by expert software engineers is performed; and d) a

description of the process areas supported by MDE and

the degree of support is presented. The evaluation ends

with a discussion of proposals that would increase MDE

support for CMMI-DEV 1.3 Level 2.

BACKGROUND
Capability Maturity Models
The CMMI has two representations that allow the

organization to achieve different improvement goals: the

staged representation and the continuous representation.

The presentation and organization of the information

differs in both representations; however, the content is

the same. In this study, CMMI for Development (CMMI-

DEV) version 1.3 is used.

CMMI-DEV consists of five maturity levels that

indicate the sophistication reached by the organization

www.asq.org 35

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

the existing MDE assets, making the necessary

architectural adjustments to exploit what is

already available. The assets can come from

previous MDE projects or standard elements.

• GP3: Define the design model. The solution

architect chooses the appropriate type of

Unified Modeling Language (UML) model

for the application developers. This model

will be used when the specific details of the

components that are being built are defined.

It also creates an initial list of stereotypes for

the UML profile.

• GP4: Identify the platform-independent model.

This model can be reformed by the solution

architect or by an experienced developer who

understands the execution environment.

• GP5: Produce sample devices for key

scenarios. An application programmer

manually programs the devices that will

act as detailed plans for templates and

transformations.

• GP6: Define the MDE tool chain. The task

identifies the MDE tools needed for the project

development. Once the task is completed, it is

possible to create a detailed plan of the effort

demanded to build the MDE tool chain.

• GP7: Validate the tool chain. This task is

performed by the solution architect, who is

responsible for the MDE project.

• GP8: Requirements for the validation of the

tool chain. A business application developer

should not modify an MDE artifact already

generated; tools must be totally integrated

with the configuration management system

• GP9: Automatic generation of devices. It will

be possible to regenerate all the artifacts of the

business application automatically from a file

generated to that end. Thus, if it is necessary

to partly enlarge a transformation during

the construction of a business application,

everything can be regenerated automatically.

• GP10: Follow-up and control. Once the

project plan has been built, follow-up and

control of an MDE project does not differ from

that of other software development projects.

• GP11: Successful reutilization. Success of an

MDE project depends on the success of the

(MDA) (Kleppe, Warner, and Bast 2003) was created to

give support to model-driven development. MDA is an

architecture that provides a set of guidelines to structure

specifications expressed as models. Using the MDE/MDA

methodology, the system’s functionality will be defined,

in the first instance, as a platform-independent model (or

PIM), through a specific language for the domain under

study. The PIM model can be translated to one or more

platform-specific models (PSMs) for the corresponding

implementation. Translation from PIM to PSMs is normally

conducted using automated tools for model transformation.

MDE can have a deep impact on the software con-

struction process. Organizations and projects frequently

depend on experts who make decisions related to the

system. MDE enables capturing their experience within

the models and transformations, thus allowing other mem-

bers of the team to take advantage of expert knowledge

without demanding their physical presence. Moreover,

this tacit and explicit knowledge can be maintained

more easily, even when experts leave the organization. In

addition, development and testing costs can be reduced

significantly when automating a large part of the work

related to code (and other artifacts) in this manner. By

means of automation, MDE favors the consistent genera-

tion of artifacts, and reduces the presence of errors.

GOOD PRACTICES IN MDE
The selection of good practices for MDE was conducted

by performing an extensive literature review, from

which three candidate papers that best aggregated such

practices were selected: Swithinbank et al. (2005), Pons,

Giardini, and Perez (2010), and Rios et al. (2006). Each

practice selected is identified with the acronym GP (good

practice) and a number.

Practices Extracted From
Swithinbank et al. (2005)

• GP1: Identify common patterns and

standards. The solution architect identifies

the patterns repeated in business applications.

These patterns arise many times due to the

consistent use of an architectural style or due

to requirements of the execution platforms.

• GP2: Identify reusable MDE assets. In this

task the solution architect compares the

common patterns identified in task GP1 with

36 SQP VOL. 20, NO. 4/© 2018, ASQ

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

• GP19: Valid information. Models and

transformations in an MDE development must

be built with accurate and valid information.

Practices Extracted From Pons,
Giardini, and Pérez (2010)

• GP20: Experts. The MDE platform must

be developed by the most experienced

professionals: domain experts, language

developers, modelers or engineers,

transformation developers, and/or code

generation developers.

• GP21: Iterations. It is recommended

to separate the development into

several iterations.

• GP22: Guidelines. It is recommended to

take into account the following guidelines

during project development: a) explicitly

invest in support tools; b) employ the best

qualified people to develop MDE tools with

the purpose of capturing and automating

their experience; c) consider that in addition

to the code, the project will generate

documents, configurations, reports, and

test cases; d) ensure that the development

process supports testing environments in

addition to production environments; e)

define configuration management strategies

for MDE tools; f) assign a period of time

for the team training on the use of MDE

tools; g) assign a period of time to consider

whether the MDE tools will be reusable in

future projects.

• GP23: Metrics. On completing the MDE

project, it is useful to generate metrics for

assessing the cost of tool development and

the productivity of the application developers

when using the tools compared with the effort

that would be needed to develop the whole

code manually.

• GP24: Tools. Identify, develop, and install

the MDE tools required, before the business

application developers need them.

• GP25: Management. MDE artifacts, their

related descriptions, and their repositories

must be actively managed.

reutilization of artifacts. This includes the

identification and recovery of an artifact to be

reused; certainty that the appropriate artifact

is being recovered for the corresponding

execution version; checking the integrity

of the artifact; and verifying if it is the

appropriate version.

• GP12: The follow-up. Follow-up of an MDE

project is similar to that of any other software

project. However, there are some additional

advantages that MDE adds that are derived

from its automation.

• GP13: Life cycle of a project. The framework

covers the creation, testing, and development

of models, patterns, and transformations that

will generate the solutions.

• GP14: Versions. There must be a mechanism

for the development and substitution of new

versions that can co-exist and ensure they are

available for the appropriate customer.

• GP15: Versioning level. The versioning level

(by file, class, service, development unit, and

others) to be applied must be determined.

Transformations, patterns, profiles, and other

reusable devices are versioned.

• GP16: Service certification of the model

or artifact. It is recommended to have a

mechanism to certify that artifacts and

models meet the standards and that the

integrity of the system is maintained.

• GP17: Model depuration. The code

generated must not be depurated. Models and

transformations must be depurated instead

for two reasons: a) it is extremely difficult

to return from the code to the problem

underlying in the model; b) it is crucial that

all the changes are conducted in the models

or transformations and not in the generated

artifacts. This practice ensures consistency of

the models and the generated solution.

• GP18: Validation and testing. Solution

artifacts must be validated against the

requirements of the solution and the

business logic of the services. MDE testing

includes two phases: a) testing the model’s

framework; and b) testing the solution

artifacts generated.

www.asq.org 37

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

Practices Extracted From
Ríos et al. (2006)
In Ríos et al. (2006) the authors define a maturity

model for MDE introduction into an organization.

This model consists of five capability levels. Maturity

level 1 corresponds to situations where modeling

practices are sporadically used or not used. For

maturity level 2, named basic MDE, the following

practices are defined:

• GP26: Modeling techniques. Identify

modeling techniques.

• GP27: Technical model. Define the

technical model.

• GP28: Code generation. Generate a code

from a technical model.

• GP29: Documentation. Generate

documentation from the technical model.

• GP30: Complete code. Complete code to

comply with all requirements.

• GP31: Selection of tools. Decide upon

appropriate modeling tools.

According to these authors, in maturity level 3 (named

initial MDE) the organization starts developing systems

in a more model-driven manner. Besides aligning the

code and the models, it develops business models that

address the business logic of the system separately

from the technical models. Business models are then

manually converted to technical models, but technical

models are represented by means of a tool and can be

converted to code automatically. For maturity level 3,

the following practices are defined:

• GP32: Model. Define business model.

• GP33: Transformations. Define

transformations from technical model to code.

• GP34: Separation in the generated code.

Separate generated from nongenerated code.

• GP35: Checking. Check models.

• GP36: Workflow. Define MDE-project workflow.

• GP37: Coverage. Decide upon coverage of

modeling activities.

• GP38: Repositories. Establish and maintain

repositories for models and transformations.

• GP39: Measures. Define, collect, and analyze

measures with respect to modeling activities.

In maturity level 4 (named integrated MDE) the

organization begins integrating its models. Business

models are derived from the domain models and are

developed by means of a tool. They are automatically

transformed to technical models, and these technical

models become code. Domain, business, and technical

concepts are separated. For maturity level 4, the following

good practices are defined:

• GP40: Metamodel. Define architecture

centric metamodel.

• GP41: Domain model. Define the domain

model.

• GP42: Transformations. Define the

transformations from business model to

technical model.

• GP43: Simulation. Simulate the models.

• GP44: Separation. Separate the technical

models of the product from the system family

infrastructure.

• GP45: Infrastructure management. Manage

common infrastructure development.

In maturity level 5 (final MDE) transformations

between models are made automatically, and the models

are fully integrated with code. For maturity level 5, the

following good practices are defined:

• GP46: DSLs. Define domain-specific

languages.

• GP47: Improvement and validation of the

metamodel. Continuously improve and

validate metamodels.

• GP48: Transformations. Define

transformations from domain model to

business model.

• GP49: V&V. Model-based validation and

verification.

• GP50: Strategic elements. Establish and

maintain strategic MDE elements.

ANALYSIS OF MDE
GOOD PRACTICES IN THE
CONTEXT OF CMMI-DEV
This section analyzes that MDE practices support each

process area. To this end, the authors look for activities,

artifacts, workflows, procedures, or people implementing

the specific practices of each area in MDE. To identify

38 SQP VOL. 20, NO. 4/© 2018, ASQ

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

following section, the detailed examination of two specific

practices is described here as an example.

• Example 1: In the configuration management

process area, SP1.1 states “Identify

configuration items.” MDE provides support to

this practice through the following practices:

practices GP1/GP6 identify MDE artifacts (or

configuration items) that must be generated;

practice GP24 indicates that MDE artifacts

must be identified before the developers of

business application need them; practices

GP26/GP30, GP40/GP43, GP46, and GP48

indicate MDE artifacts/configuration items

each specific practice, the SP acronym will be used, fol-

lowed by a number (“x.y”). The “x” is the number of the

specific goal to which the specific practice corresponds.

The “y” is the sequence number of the specific practice

within that goal. This terminology is used throughout the

study to refer to the specific practices in CMMI-DEV 1.3.

Table 1 shows the specific practices of the configuration

management process area sorted by specific goal.

Not all good MDE practices selected have been

used to evaluate CMMI-DEV 1.3 Level 2; however, the

purpose of the complete list is to start the analysis for

the remaining CMMI-DEV 1.3 levels that are beyond the

scope of the present study. To facilitate the understand-

ing of the whole analysis that will be introduced in the

©
2
01

8
, A

SQ

Configuration Management (CM)

Process Area

SG1 Establish Baselines

SP1.1 Identify configuration Items

SP1.2 Establish a CM System

SP1.3 Create or release baselines

SG2 Track and Control Changes

SP2.1 Track change requests

SP2.2 Control configuration items

SG3 Establish Integrity

SP3.1 Establish CM records

SP3.2 Perform configuration audits

Requirements Management (REQM)

Process Area

SG1 Manage Requirements

SP1.1 Understand requirements

SP1.2 Obtain commitment to

requirements

SP1.3 Manage requirements changes

SP1.4 Maintain bidirectional traceability

of requirements

SP1.5 Ensure alignment between project

work and requirements

Process and Product Quality

Assurance (PPQA) Process Area

SG1 Objectively Evaluate Processes

and Work Products

SP1.1 Objectively evaluate processes

SP1.2 Objectively evaluate work products

SG2 Provide Objective Insight

SP2.1 Establish records

SP2.2 Communicate and resolve

noncompliance issues

Project Planning (PP) Process Area

SG1 Establish Estimates

SP1.1 Estimate the scope of the project

SP1.2 Establish estimates of work

product and task attributes

SP1.3 Define project life-cycle phases

SP1.4 Estimate effort and cost

SG2 Develop a Project Plan

SP2.1 Establish the budget and

schedule

SP2.2 Identify project risks

SP2.3 Plan data management

SP2.4 Plan the project's resources

SP2.5 Plan needed knowledge and skills

SP2.6 Plan stakeholder involvement

SP2.7 Establish the project plan

SG3 Obtain Commitment to the Plan

SP3.1 Review plans that affect the

project

SP3.2 Reconcile work and resource

levels

SP3.3 Obtain plan commitment

Supplier Agreement

Management (SAM) Process Area

SG1 Establish Supplier Agreements

SP1.1 Determine acquisition type

SP1.2 Select suppliers

SP1.3 Establish supplier agreements

SG2 Satisfy Supplier Agreements

SP2.1 Execute the supplier agreement

SP2.2 Accept the acquired product

SP2.3 Ensure transition of products

TABLE 1 Specific practices by goal

Measurement and Analysis (MA)

Process Area

SG1 Align Measurement and

Analysis Activities

SP1.1 Establish measurement

objectives

SP1.2 Specify measures

SP1.3 Specify data collection and

storage procedures

SP1.4 Specify analysis procedures

SG2 Provide Measurement Results

SP2.1 Obtain measurement data

SP2.2 Analyze measurement data

SP2.3 Store data and results

SP2.4 Communicate results

Project Monitoring and

Control (PMC) Process Area

SG1 Monitor the Project Against

the Plan

SP1.1 Monitor project planning

parameters

SP1.2 Monitor commitments

SP1.3 Monitor project risks

SP1.4 Monitor data management

SP1.5 Monitor stakeholder

involvement

SP1.6 Conduct progress reviews

SP1.7 Conduct milestone reviews

SG2 Manage Corrective Action

to Closure

SP2.1 Analyze issues

SP2.2 Take corrective action

SP2.3 Manage corrective actions

www.asq.org 39

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

that must be generated during development.

In summary, there are MDE practices that,

when accomplished, satisfy the goal of the

CMMI practices mentioned.

• Example 2: In the requirements management

process area, SP1.5 defines “Ensure alignment

between work products and requirements.”

In this case, MDE support is based on the

practice GP5, which indicates that simple

artifacts must be produced for key scenarios,

and on the practice GP6, which states the

need of validating the tool chain to ensure

the alignment of work products with the

requirements. Moreover, the application of

GP49 ensures that traceability and alignment

will be maintained between work products

and requirements. Therefore, there are MDE

practices that, when accomplished, satisfy the

goal of the CMMI practices mentioned.

The results obtained for each of the process areas

CMMI-DEV 1.3 Level 2 are as follows.

Configuration Management
(CM) Process Area
According to CMMI-DEV, the purpose of this process

area is to establish and maintain the integrity of work

products using configuration identification, configura-

tion control, and configuration status and configuration

audits. After analyzing the specific practices here, the

authors conclude that there are several MDE good

practices that support this process area. Table 2 shows

the GPs that give support to each SP in the area. The

authors conclude that seven CMMI-DEV 1.3 specific

practices out of seven are supported by MDE.

Requirements Management
(REQM) Process Area
According to CMMI, the purpose of this process area is

to manage requirements of the project’s products and

components and to ensure alignment between those

requirements and the project’s plan and work products.

In this case, the MDE support is complete, given that

handling requirements in an MDE project means defining

the characteristics and management of the main MDE

artifacts (that is, the models), and the procedures for

carrying out the modeling activity are described by

all the authors who were taken as reference. Table 3

shows GPs that give support to each SP in the area. This

process area has five specific practices. All of them are

supported by MDE.

Process and Product Quality
Assurance (PPQA) Process Area
The purpose of this area is to provide staff and manage-

ment with objective insight into processes and associated

work products. A high MDE support has been verified to

this process area, as can be observed in data displayed

in Table 4 on the next page. This process area has four

specific practices, three of which are supported by MDE.

Measurement and Analysis
(MA) Process Area
The purpose of measurement and analysis is to develop

and sustain a measurement capability used to support

©
2
01

8
, A

SQ
©
2
01

8
, A

SQ

TABLE 2 MDE support for configuration
management (CM) process area

SP Definition of the SP GPs that support it

1.1
Identify the configuration

items

GP1-6, GP24, GP26-30,

GP40-43, GP46, GP48

1.2
Establish a configuration

management system

GP22, GP25, GP8, GP9,

GP11, GP14, GP38, GP50

1.3 Create baselines
GP1-6, GP27-33, GP36,

GP40-42

2.1
Track changes

requirements
GP9

2.2
Control the configuration

items
GP9, GP17, GP18

3.1
Establish records for

configuration management
GP8, GP9, GP50

3.2
Conduct configuration

audits
GP8

TABLE 3 MDE support for requirements
management (REQM) process area

SP Definition of the SP GPs that support it

1.1 Understand the requirements GP3, GP5, GP13, GP20

1.2
Obtain commitment to

requirements
GP6, GP13, GP22

1.3 Manage requirement changes GP14 y GP15

1.4
Maintain bidirectional

traceability of requirements

GP11, GP15, GP16,

GP18, GP25, GP49,

GP50

1.5

Ensure alignment between

work products and

requirements

GP5, GP6, GP49

40 SQP VOL. 20, NO. 4/© 2018, ASQ

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

products and services is part of the organization’s strategy

and is beyond its scope.

SUPPORT LIMITATIONS
PROVIDED BY MDE TO
EACH CMMI-DEV AREA
This section deals with the possible causes and conse-

quences of the limitations in support provided by MDE

to each CMMI-DEV area (see Table 6).

Configuration Management

(CM) Process Area
This process area has high MDE support (100 percent).

Requirements Management

(REQM) Process Area
This process area has high MDE support (100 percent).

Process and Product Quality

Assurance (PPQA) Process Area
This process area has high MDE support (75 percent).

The practice SP2.2, “Communicate and resolve noncom-

pliance issue,” is the only CMMI-DEV specific practice

that does not have support. For this specific practice,

the CMMI document states that “noncompliance issues

management information needs. This area defines

eight specific practices, but only three of them are sup-

ported by MDE practices. Table 5 shows the supported

specific practices.

Project Monitoring and Control
(PMC) Process Area
The purpose of project monitoring and control is to

provide an understanding of the project’s progress so

appropriate corrective actions can be taken when the

project’s performance deviates significantly from the

plan. This area defines 10 specific practices; only five

of them are supported by MDE practices.

Project Planning (PP) Process Area
The purpose of the project planning process area is

to establish and maintain plans that define project

activities. This process area has a high degree of MDE

support (86 percent). The only two practices unsupported

by MDE are

• SP3.1. Review plans that affect the project

• SP3.2. Reconcile work levels and resource levels

Supplier Agreement Management
(SAM) Process Area
This area was excluded from the analysis, since it does

not apply to an MDE project. Outsourcing of external

TABLE 4 MDE support for process and
product quality assurance (PPQA) process

SP Definition of the SP GPs that support it

1.1
Objectively evaluate

processes

MDE GP6, GP8, GP13,

GP16, GP22, GP35, GP50

1.2
Objectively evaluate work

products

GP5, GP11, GP16, GP18,

GP22, GP25

2.1 Establish records GP11, GP16, GP50

2.2
Communicate and resolve

noncompliance issues
Not supported

TABLE 5 MDE support for each specific
practice of the MA process area

SP Definition of the SP GPs that support it

1.1
Establish measurement

objectives
GP23

1.2 Specify measures GP23

1.3
Specify data collection and

storage procedures

GP9, GP11, GP25,

GP38

TABLE 6 MDE support to each process area
of the CMMI-DEV Level 2

Process Area

Total

number

of SPs

Number

of SPs

supported

by MDE

%

supported

by MDE

Configuration

management (CM)
7 7 100%

Requirements

management (REQM)
5 5 100%

Process and product

quality assurance

(PPQA)

4 3 75%

Measurement and

analysis (MA)
8 3 37.5%

Project monitoring and

control (PMC)
10 5 50%

Project planning (PP) 14 12 86%

Supplier agreement

management (SAM)
6 0 0%

Total 54 35 64.81%

©
2
01

8
, A

SQ

©
2
01

8
, A

SQ
©
2
01

8
, A

SQ

www.asq.org 41

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

the case of MDE, the possible data would be technical

data, software documentation, and other information

related to the MDE project.

Therefore, to support the specific practice, the appro-

priate procedures should be specified for the analysis of

the MDE tools. In general terms, although the actions

for generating those tools (which are the data in this

case) are specified, the MDE practices do not generally

indicate the procedures to record and analyze them.

Then, SG2, “Provide measurement results,” corre-

sponding to unsupported specific practices SP2.1, SP2.2,

SP2.3, and SP 2.4, is explained in CMMI. The primary

reason for doing measurement and analysis is to address

identified information needs, derived from organization

and business goals. In this case, CMMI specific practices

refer to the need for obtaining, recording, and storing

the results of measurements to obtain information.

As in the case of SP 1.4, recording of results is a weak

point in MDE and was also highlighted for the process and

product quality assurance process area. This problem

should be resolved by originating new MDE practices

using expert recommendations.

Project Monitoring and Control

(PMC) Process Area
This is the second process area with the lowest MDE

support (50 percent support). Unsupported specific

practices are as follows:

• SP1.6 Conduct progress reviews

• SP1.7 Conduct milestone reviews

• SP2.1 Analyze issues

• SP2.2 Take corrective actions

• SP2.3 Manage corrective actions

In the authors’ opinion, the insufficient MDE support

to this process area is due to the fact that the authors,

whom this study was based on, state that follow-up of an

MDE project is similar to that of any software project, and

no practices or recommendations have been determined

aiming at the specific matter of follow-up and control of

the MDE project. However, which MDE-specific issues

should be analyzed, which corrective actions should be

conducted throughout the process development, which

milestones should be key, and how corrective actions

should be managed are some of the questions related to

an MDE project that could be analyzed. Previous analysis

of the area under study revealed that even for the specific

supported practices, few MDE practices have been found.

are problems identified in evaluations that reflect lack

of adherence to applicable standards, process descrip-

tions or procedures. The status of noncompliance issues

provides an indication of quality trends.”

Examples of work products indicated in CMMI are

corrective action reports, evaluation reports, and quality

trends. An important problem in MDE relates to the

lack of procedures indicating the need to record the

noncompliance issues. For example, MDE practice GP5,

“Produce sample artifacts for key scenarios,” applies to

control of noncompliance issues, but it does not include

the need to generate procedures for their record. In this

case, the GP5 practice should have a subpractice that

states the need to perform corrective action reports and

evaluation reports when failures in the sample artifacts

are detected.

Measurement and Analysis

(MA) Process Area
This constitutes the Level 2 process area with the low-

est MDE support: 37.5 percent support. Nonsupported

practices are as follows:

• SP1.4. Specify analysis procedures

• SP2.1. Obtain measurement data

• SP2.2. Analyze measurement data

• SP2.3. Store data and results

• SP2.4. Communicate the results

Three out of four specific practices of the specific

goal (SG) 1, “Align measurement and analysis activities,”

are supported. None of the specific practices of the SG2

is supported. In general, when analyzing MDE support

to specific practices of goal 1, the authors observe that

the support found, though existing, is based on few MDE

practices, especially SP1.1 and SP1.2, which are related

to the needs of performing measurements (MDE GP23,

which refers to the utility of generating metrics after

the MDE project).

Following the analysis, the authors observe that

specific practice SP1.4 “Specify analysis procedure,” of

SG1, is not supported by MDE. The practice is oriented

to the specification of analysis procedures that allow

details on how collected data are analyzed and com-

municated. According to the CMMI-DEV 1.3, data mean

the information recorded that can include technical

data, software documentation, financing information,

fact representation, numbers, or data of any nature

that can be communicated, stored, and processed. In

42 SQP VOL. 20, NO. 4/© 2018, ASQ

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

Moreover, although some existing MDE practices recommend the

evaluation of artifact reuse when designed and built (practices

GP11, GP22, and GP38), few other specific practices ensure that

this will become effective. For example, practice GP2 applies to

the reuse in itself when indicating that it is necessary “to ensure

that in the following project, tasks that face reuse of MDE artifacts

will be included;” however, specific tasks needed to reach this goal

are not stated.

SP1.4, “Estimate effort and cost,” supported by MDE practices

GP6 and GP23, is another issue. Given that CMMI-DEV 1.3 states

that when this specific practice is analyzed in the project planning

process area, it expresses “estimates of effort and cost are gener-

ally based on results of analysis using historical data models;”

this is reasonable in the case of MDE, and estimating efforts and

costs becomes difficult. This weak point in MDE is that there is

insufficient experience regarding use and reuse of MDE artifacts

in the organizations.

Overall Summary
The simultaneous analysis of the seven process areas reveals that

some CMMI specific practices are supported by only two MDE

practices, while others (for instance, SP2.1 from the project planning

process area with 34 supporting practices) are strongly supported.

Therefore, it seems reasonable to determine a range, in which to say

MDE support is weak, absent, or strong. Taking average values of the

number of specific practices supported by MDE in a given process

area, it is reasonable to take two MDE practices as a limit. This

value corresponds to the two process areas with less MDE support:

project monitoring and control, and measurement and analysis.

Taking into account the results obtained, the authors establish

that if the average number of specific practices supported by MDE

is lower than or equal to 2 the support is weak; and conversely, if

it is higher, the support is strong. The summary of this definition

is displayed in Table 7.

As an example, the authors can ana-

lyze how to improve support to specific

practices that have limited support,

such as specific practice SP1.5, “Monitor

stakeholder’s involvement,” supported

only by MDE practice GP24. In MDE, the

most significant stakeholders are busi-

ness application developers who do not

participate in the MDE project but will

be its users. Other practices to support

it, in addition to practice GP24, should

be generated to ensure participation of

stakeholders throughout the life cycle of

the MDE process.

Project Planning

(PP) Process Area
This process area has a high degree of

MDE support (86 percent). The only two

practices unsupported by MDE are:

• SP3.1. Review plans that affect

the project

• SP3.2. Reconcile work levels and

resource levels

The MDE GP6 practice indicates that

after defining the tool chain, “it is possible

to create a detailed plan of the necessary

effort to build the MDE tool,” but it states

“possible” and not “compulsory;” more-

over, it is not stated as an independent

task, which the authors interpret to be the

correct classification. The authors’ recom-

mendation would be to include it explicitly

as a task in the list of assignments to be

conducted in the MDE project. In fact, it

is understood that the task of estimating

the effort and cost of an MDE project is

not given sufficient importance. It must

be kept in mind that lack of clarity on

the cost of the project is one of the most

important obstacles for managers and

directors in adopting the MDE.

Although it is generally stated that

using MDE can save costs, when an enter-

prise starts implementing the MDE that

is not often true. This is why cost sav-

ings should be examined as repositories

are built and reuse becomes possible.

TABLE 7 Number of CMMI specific practices supported
by MDE practices per process area

Process area
Support

(#GPs/#SPs)

Type of

support

Configuration management (CM) 7.28 Strong

Requirements management (REQM) 3.8 Strong

Process and product quality assurance (PPQA) 5.33 Strong

Measurement and analysis (MA) 2 Weak

Project monitoring and control (PMC) 2 Weak

Project planning (PP) 11.16 Strong

Supplier agreement management (SAM) 0
Not

supported

©
2
01

8
, A

SQ

www.asq.org 43

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

PROPOSAL VALIDATION
As a preliminary validation of the analysis conducted in this study,

five software engineers who are specialists in quality management

were asked to provide their opinion on the results and conclusions

obtained. A survey was constructed to record their agreement or

disagreement on each item of the proposal for three Level 2 process

areas, and within each area only two of the specific practices were

selected. A detailed description of the survey methodology and

justification can be found in Esterkin (2014).

Tables 8, 9, and 10 show the support obtained. Each column shows

the approval percentage expressed by each professional consulted,

while the last column shows the average value obtained for each

specific practice. This leads to a final result for the three process

areas displayed in Table 11.

The evaluation was only carried out with five professionals since

it was very difficult to find experts in CMMI-DEV with knowledge of

MDE. But, the authors have noticed that it is more common to find

experts in MDE with some knowledge of CMMI-DEV and that this

is enough to understand the proposal. The authors are currently

improving the evaluation following this approach.

RELATED WORK AND
RECOMMENDATIONS
In Rios et al. (2006) the authors show how a maturity model developed

within one project helped several enterprises to adopt MDE. The

“Modelware” project was conducted in Spain between 2002 and 2006

and defined five maturity levels that placed the enterprises adopting

MDE in different degrees of MDE practice and artifacts usage. Instead

of defining different levels of accomplishment of MDE practices, the

authors propose the adoption of a recognized quality model, such as

the CMMI, in response to the need for integrating the control of specific

development practices into a new paradigm of software development.

Quintero et al. (2012) state the “top” problems of the MDE and

introduces recommendations on how to manage and mitigate them.

They present 10 problems:

1. Models become out of date and inconsistent with

the code.

2. Models cannot be easily exchanged between tools.

3. Modeling tools are hard to install, learn, configure,

and use.

4. The code generated from a modeling tool is unsatisfactory.

5. The details that need to be implemented are hard

to describe

6. When the modeling tools change, the models

become obsolete.

7. Modeling tools are too expensive.

TABLE 8 Results of the survey of
the configuration management
(CM) process area

SP
Respondents

Avg
1 2 3

SP1.1 87.5% 100% 100% 95.8%

SP2.1 100% 100% 100% 100%

TABLE 9 Results of the survey
of the requirement management
(REQM) process area

SP
Respondents

Avg
1 2 3

SP1.1 100% 40% 100% 80%

SP1.5 100% 100% 100% 100%

TABLE 10 Results of the survey
of the project planning (PP)
process area

SP
Respondents

Avg
1 2 3

SP1.1 85.7% 80.9% 38.1% 65.2%

SP1.4 50% 50% 100% 66.6%

TABLE 11 Results of preliminary
validation for MDE support

Process Area
MDE Support

(validation results)

Configuration

management (CM)

Yes, for both SPs

surveyed

Requirements

management (RM)

Yes, for both SPs

surveyed

Project planning

(PP)

Yes, for SP1.1; Yes

(weak) for SP1.4

8. Modeling tools do not allow the

analysis of my design the way I

would like.

9. Modeling tools hide too many

details that would be visible in

the code.

10. Organizational culture may not

like the use of models.

©
2
01

8
, A

SQ
©
2
01

8
, A

SQ
©
2
01

8
, A

SQ
©
2
01

8
, A

SQ

44 SQP VOL. 20, NO. 4/© 2018, ASQ

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

new software development process designed to be com-

patible with the maturity model. The authors’ proposal

is not focused on any process in particular, but on MDE

methodology in general; thus, it attempts to be applicable

to any MDE development process.

Finally, in SEI (2016), McMahon (2011), and Konrad

and McGraw (2008) the connection of the CMMI-DEV

model with agile methodologies is described, specify-

ing the key aspects that allow the coexistence of both

approaches. Although these studies focus on another

software development paradigm, it is convenient to

take them into account, since they provide the basis for

the mapping definition between the CMMI-DEV and a

software development paradigm.

CONCLUSIONS
According to this study, MDE provides a high degree

of support for the configuration management, process

and product quality assurance, and project planning

process areas of CMMI-DEV 1.3. In general terms, the

authors can conclude that in MDE detailed description

of procedures, documentation, follow-up methods, and

other topics are still missing. Problems related to lack

of support are still unresolved in process areas with

low MDE support, such as measurement and analysis,

and project monitoring and control; these should be

addressed in continued MDE development to improve

support of CMMI-DEV Level 2.

Although the unsupported (or weakly supported)

process areas and specific practices are explained to

a large extent by the recent introduction of MDE into

software development in industry, the present study

aimed to identify the gaps that should be resolved to

stimulate the use of MDE in organizations.

Software developers who apply the MDE need a

standard that defines the guidelines and good practices,

taking into account the risks and particularities of the

MDE. On the other hand, CMMI must offer support to

this growing sector of development teams and companies

that decide to incorporate new paradigms of software

development. However, for this integration to occur,

it is necessary for researchers, software developers,

MDE toolmakers, and the CMMI institute to coordinate

efforts to interpret CMMI-DEV practices within an MDE

development process.

This would include at least the following activities:

• Take into account that there are risks that

could affect the quality of the product, in a

Analysis of Quintero’s 10 problems revealed that the

first nine are technical matters related to models and

the modeling tools used to generate them; the remaining

problem is related to the organizational culture and its

willingness to use models. However, in some cases, its

technical recommendations could help increase MDE

support to CMMI Level 2 when incorporating into the

analysis the tools used for MDE development, charac-

teristics, and costs. This is the case of practice SP1.4,

“Estimate effort and cost” associated with the project

planning process area. The recommendation to face

problem 7, “Modeling tools are too expensive,” is given

in the following response: “There are many free software

tools; however, if in the selection process, the tool selected

is too expensive, the first projects must be profitable in

cost, time, and quality to justify the investment.” This

reveals an additional element that was not considered

in MDE: the cost of the MDE tools should be taken into

account when estimating the cost of an MDE project. In

addition, MDE support is reinforced by SP1.3, SP1.4, and

SP1.5 of the requirements management process area.

The authors’ study has investigated whether MDE

support can be improved by applying those recommenda-

tions and shows that the analysis of the specific practices

in CMMI Level 2 (considering MDE top problems and

the recommendations to face them) introduces few new

elements regarding practices unsupported by MDE.

However, it reinforces the support with new elements

in some specific practices that do support MDE. This is

reasonable given that CMMI Level 2 is the “managed”

level, and Quintero et al. (2012) analyze the tools from

a technical point of view.

In Calic, Dascalu, and Egbert (2008), the authors set

out challenges that MDE is still facing, such as tool limita-

tions and the lack of integration to the business process

modeling models in the transformation of models. The

article recognizes current risks related to both weak-

nesses; however, it also analyzes and describes a way to

mitigate these risks through controls introduced in the

notes, which provide suggestions for new elements in the

CMMI model. Regarding this subject, the authors’ study

incorporates a detailed analysis of CMMI-DEV Level 2

practices and their connection with MDE.

In Lins de Vasconcelos et al. (2011) the authors

defined a software development process based on

MDE from requirements to final code generation that

integrates elements of the i* framework and the goal-

oriented requirement engineering (GORE) methodology,

compatible with CMMI-DEV. They focused on defining a

www.asq.org 45

Certifying CMMI-DEV in the Context of Model-Driven Software Engineering

software development project, that are not

mitigated if only the practices of the MDE

paradigm are applied.

• Complement MDE with other methodologies,

such as the rational unified process, as

described in Eeles (2004) and Balmelli

et al. (2006).

• Document and disseminate the MDE good

practices as part of the CMMI-DEV model.

• Define the practices to be evaluated in the

MDE process.

• Consider the inclusion of additional artifacts

in the MDE modeling to improve compliance

with CMMI-DEV, especially for unsupported

(or weakly supported) process areas.

• Document good MDE practices and additional

artifacts in the process asset library (PAL) of

the organization. The PAL is a repository of

information used to keep and make available

processes that are useful for those who

are defining, implementing, and managing

processes in the organization (Garcia 2004).

• Provide special training on MDE to the CMMI

evaluators who evaluate a company that

develops under MDE.

One of the primary limitations of this study was the

use of a small expert panel for preliminary validation.

A further study, which collects proposals and MDE

practice recommendations from a much larger group

of specialist professionals in software engineering, is

planned to help improve the findings and contribute to

increased support for CMMI-DEV Level 2.

REFERENCES

Balmelli, L., D. Brown, M. Cantor, and M. Mott. 2006. Model-driven

systems Development. IBM Systems Journal - Model-Driven Software

Development 45, no. 3.

Brambilla, M., J. Cabot, and M. Wimmer. 2012. Model-driven software

engineering in practice. San Rafael, CA: Morgan & Claypool Publishers.

Calic, T., S. Dascalu, and D. Egbert. 2008. Tools for MDA software develop-

ment: Evaluation criteria and set of desirable features. Fifth International

Conference on Information Technology: New Generations, 44-50.

Di Ruscio, D., R. F. Paige, and A. Pierantonio, eds. 2014. Science of

Computer Programming. Special issue on Success Stories in Model Driven

Engineering 89:69-222. Elsevier.

Eeles, P. 2004. MDA and RUP. IBM Software Group. IBM Corporation.

Available at: http://www.architecting.co.uk/presentations/MDA and RUP.pdf.

Esterkin, V. 2014. Análisis y Evaluación del MDE (model driven develop-

ment) desde la perspectiva de CMMI DEV 1.3 Nivel 2. Master thesis.

Universidad Abierta Interamericana. Buenos Aires, Argentina.

Garcia, S. 2004. What is a process asset library? Why should you care.

Boston, MA: Aimware Professional Services Inc.

Kleppe, J. Warner, and W. Bast. 2003. MDA explained. The model driven

architecture: Practice and promise. Boston, MA: Addison-Wesley.

Konrad, M., and S. McGraw. 2008. CMMI & Agile. Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University.

Lins de Vasconcelos, A., G. Giachetti, B. Marín, and O. Pastor. 2011. Towards

a CMMI-compliant goal-oriented software process through model-driven

development. The Practice of Enterprise Modeling, 253-267. Lecture Notes

in Business Information Processing. New York, NY: Springer.

McMahon, P. E. 2011. Integrating CMMI and agile development. Boston,

MA: Addison Wesley.

Object Management Group. 2015. OMG success stories. Available at:

www.omg.org.

Pons, C., R. Giardini, and G. Pérez. 2010. Desarrollo de software dirigido

por modelos. Editorial Edulp and McGraw Hill Educación, 279. Available

at: http://sedici.unlp.edu.ar/handle/10915/26667.

Quintero, J., P. Rucinque, R. Anaya, and G. Piedrahita. 2012. How to face

the top MDE adoption problems: An exploratory study case (CLEI). XXXVIII

Conferencia Latinoamericana, 1-10. October, Medellín, Colombia.

Ríos, E., T. Bozheva, A. Bediaga, N. Guilloreau. A. Rensink, and J. Warmer.

2006. MDE maturity model: A roadmap for introducing model-driven

development. In ECMDA-FA 2006. LNCS 4066, 78-89.

SEI. 2010. CMMI-DEV 1.3. Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University. Available at: http://www.sei.cmu.edu/reports/

10tr033.pdf.

SEI. 2016. A guide to scrum and CMMI: Improving agile performance

with CMMI. Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University.

Stahl, T., and M. Voelter. 2006. Model-driven software development.

Technology, engineering, management. New York, NY: Wiley.

Swithinbank, P., M. Chessell, T. Gardner, C. Griffin, J. Man, H. Wylie, and

L. Yusuf. 2005. Patterns: Model-driven development using IBM Rational

software architect. Available at: http://www.redbooks.ibm.com/redbooks.

BIOGRAPHIES

Claudia Pons is a full professor at the University of La Plata and the

director of the Center of High Studies in Computer Technology (CAETI) in

Buenos Aires, Argentina. She obtained a doctorate in the application of

formal methods to object oriented modeling in 2000. She has participated

in several research and development projects and has been part of the

program committee of the ACM/IEEE MoDELS Conference and other inter-

national conferences. She has published papers and books in this field of

knowledge. Pons can be reached by email at claudia.pons.33@gmail.com.

Magister Viviana Esterkin obtained a master’s degree at the Universidad

Abierta Interamericana (UAI) in 2014. She works as project evaluator and

CMMI assessor, and currently she is a professor at the University of Tres

de Febrero (Untref), Buenos Aires, Argentina.

