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Abstract. Model-Driven Testing or MDT is a new and promising approach for 
software testing automation that can significantly reduce the efforts in the testing cycle 
of a software development. It consists in a black box test that uses structural and 
behavioral models to automate the tests generation process. In this paper, we describe a 
tool that allows developers to translate a software model written in UML with OCL 
formal constraints to its corresponding Java code, automating the generation of strong 
test-cases codes and specifying them not only in Java language but also in two formal 
languages, which are OCL and Alloy. This tool provides more reliable support by 
amalgamating different techniques, which strengthens the testing process. 
Keywords: model driven testing, UML, OCL, Java, testing, formal languages. 
 

Abstrato. O Model-Driven Testing ou MDT é uma nova e promissora abordagem para 
automação de testes de software que pode reduzir significativamente os esforços no 
ciclo de testes de um desenvolvimento de software. Consiste em um teste de caixa 
preta que utiliza modelos estruturais e comportamentais para automatizar o processo de 
geração de testes. Neste artigo, descrevemos uma ferramenta que permite aos 
desenvolvedores traduzir um modelo de software escrito em UML com restrições 
formais OCL para seu código Java correspondente, automatizando a geração de 
códigos de casos de teste e especificando-os não apenas na linguagem Java, mas 
também em dois linguagens formais, que são OCL e Alloy. Esta ferramenta fornece 
suporte mais confiável, combinando diferentes técnicas, o que fortalece o processo de 
teste. 
 
Palavras-chave: teste orientado por modelo, UML, OCL, Java, teste, linguagens 
formais. 

Introduction 

The Model-Driven Software Development Process (MDD) [Brambilla et al 2012] [Stahl 

and Voelter 2006] is a discipline that is generating a lot of expectations as an alternative to 

conventional methods of software production. MDD set out a new way of understanding 

development and maintenance of software systems by using models as main artifacts in the 

development process. In MDD, the models are used to direct tasks related to 

comprehension, design, construction, tests, deployment, operation, management, 

maintenance and modification of systems. A great number of theoretical and practical 

studies are involved in this approach. Moreover, experiences   surveyed by´[Di Ruscio, et al 

2014] and by the Object Management Group [OMG 2015] reported on  existing tools that 
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make this approach real at a commercial level, with several examples of successful 

introduction of MDD in different organizations  

The success of any MDD project heavily depends on the quality of the source models 

that should be accurate, consistent and complete. The Unified Modeling Language [UML 

2017] is a general-purpose modeling language that is intended to provide a standard way to 

visualize the design of a system. The creation of UML was motivated by the desire to 

standardize the heterogeneous notational systems and approaches to software design. The 

UML was adopted as a standard by the Object Management Group (OMG). On the other 

hand, the Object Constraint Language [OCL 2017] is a textual language with formal 

foundation, based on Set Theory and First-order Logic, but with an object-oriented nature 

that facilitates its understanding. OCL is the standard language to define integrity 

constraints on UML models. In this way, the combination UML/OCL is considered a 

formal modeling language.  

The ultimate goal of MDD is to generate software automatically from the models, so that 

the target software is correct by construction. However, this dream has not been achieved 

yet since the generated code must usually be completed by hand, which introduces errors. 

Thus the testing cycle cannot be ignored as a substantial part of the software development 

process. 

In this regard, one of the branches of MDD is the Model-Driven Testing (MDT) [Utting 

and  Legeard 2007], a new approach for software testing automation, which can 

significantly reduce the efforts in the tedious testing cycle of software development. It 

consists in a black box testing technique that uses structural and behavioral models to 

automate the generation of test-cases code and test-cases data sets. 

There exist a significant number of tools that generate code from software models, but 

few of them take full advantage of what formal modeling languages offer for automation of 

the testing cycle. For this reason, the construction of a new software tool to automate the 

generation of test-cases code was developed using the formal foundation of the modeling 

notations, in order to obtain better benefits.   

This tool, named MDT+, allows developers to automatically generate Java code from 

UML/OCL models, including both the system classes and their test-cases code. The 

generated test-cases code is written in Java and it is executable. Additionally, test code is 

enhanced with formal specifications which allow the application of model checking 

techniques as a complement to testing. In this way MDT+ combines static and dynamic 

formal analysis of the system, improving the efficacy of the analysis process.  

The rest of the paper is organized as follows. Section 2 explains the technological 

background. Section 3 describes the basic features of MDT+. Section 4 presents an 

extension of the tool which improves the tests through the application of a richer 

formalism. Section 5 discusses a set of related works.  Finally, conclusions are presented in 

section 6. 

Eclipse Modeling Tools 

MDT+ was developed taking advantage of a number of existing tools, in particular the 

Eclipse Modeling Project [EMP 2017] that focuses on the evolution and promotion of 

model-based development technologies within the Eclipse community by providing a 
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unified set of modeling frameworks, tooling, and standards implementations. In this 

section, the main Eclipse elements that were included in the development are briefly 

described. 

 

Eclipse Modeling Framework (EMF).  

The Eclipse Modeling Framework [EMF 2017] includes a set of plugins that can be used 

to specify a data model and generate code or other kind of output based on that model. 

 

Papyrus.  

Papyrus (2017) is a subproject component that aims to provide an integrated and usable 

environment to edit any type of EMF model. Papyrus provides diagrams editors for EMF-

based modeling languages such as UML2 and offers the chance of integrating these editors 

with other tools. It also offers an advanced support for profiles, allowing the user to define 

standard UML2-based Domain Specific Language (DSL) editors and their extension 

mechanisms.  

 

Eclipse Acceleo.  

Eclipse Acceleo (2017) is an open source code generator implementing the OMG's MOF 

Model to Text Language (MTL) standard that uses any EMF-based models (e.g., UML, 

SysML, domain specific models, etc.) to generate any kind of code (e.g.,Java, C, PHP, 

etc.).  

MDT+.  A Tool for Test-cases Code Generation 

In this section, we describe the characteristics of MDT+, the software tool that was built 

to automate the generation of test-cases code. Starting from an OCL/UML system model, 

the Java code is automatically generated, creating the classes with their corresponding test-

cases code and an OCL file which contain all the formal constraints in a centralized form. 

The process is carried out in three steps, as described below following a running example. 

Creating the data model with Papyrus  

When creating a Papyrus project with the Eclipse IDE, a default UML class diagram will 

be created in three formats: traditional model view (.di), XML annotations (.notation) and 

Directories tree (.uml). The focus of the tool is on the .di file, which allows the 

visualization of a traditional class diagram, such as the one displayed in figure 1. The 

model in the figure represents a university institution, containing Students, Teachers, 

Subjects, Careers and Careers Plans, among others.  
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Fig. 1. Class diagram. 
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The diagram also includes a set of OCL restrictions (the palette Constraint elements) 

representing invariants associated with specific classes. For example, students are not 

allowed to be enrolled in more than one career, and in order to teach a subject, teachers 

must be experts on their area, which is  reflected in the following OCL invariants, 

 
Context Student  

inv: self.careers -> size() ≤ 1 

 

Context Subject 

inv: 

self.teachers->forAll(o| o.specialties->includes(self.area)) 

 

Additionally, the operation pre and post conditions can be specified using OCL. For 

example, the  following OCL expressions state that in order to enroll in a subject a student 

must have already passed all its correlatives and the subject inscription is enabled,  

 
Context Student::enrolSubject(subject) 

pre:self.passedSubjects->includesAll(subject.correlatives) 

pre:subject.inscriptionAllowed=true 

 

Besides, a set of post conditions for the operation can be specified. The first one checks 

that the specified subject has been actually added to the collection and the second one 

specifies that the collection size is incremented in one after executing the method, 

 
context Student::enrolSubject(subject) 

post: self.subjectsIsEnrolledIn-> includes(subject) 

post: self.subjectsIsEnrolledIn->size() = 

self.subjectsIsEnrolledIn@pre->size()+1 

 

A correct implementation code should hold all the invariants, pre and post conditions 

defined in the model. Consequently, the test cases will check that those constraints hold 

when executing the methods.  

MDT+ also allows developers to define the body of each class method in a different 

range of languages and formats. In the case study of this paper methods specifications are 

defined in OCL, since this format is quite similar to the Java syntax, its later translation 

(from the model class into the Java file) is straightforward. 

Translating the UML model to Java code with Tests 

MDT+ includes the following components in order to translate the UML/OCL model to 

executable Java code equipped with tests: 

  

ü Two java classes, Activator.java and Generate.java, which are configuration files, 

specifying the included libraries among other things.  

 

ü An Acceleo module called generate.mtl which contains the translation algorithm 

(from UML model to java code), written in the Acceleo language.  
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First of all the MDT+ user chooses the UML model from which generate the 

corresponding classes, for example, the UML model displayed in figure 1 can be used as 

the source model in the Acceleo configuration. 

Then, the Acceleo algorithm loops over every class of the UML source model, and for 

each one it creates two artifacts: a regular .java class and a checker class for testing 

purposes. Also, the algorithm creates the integration test, which runs every individual 

generated test in a single step.  

In parallel, the file University.ocl is created, containing every modeled OCL constraint 

associated to its context, in a centralized way. 

Each internal checker class consists of two methods, respectInvariants(classInstance) and 

respectCondition(condition), to chek invariants, pre and post conditions respectively.  

The class constructor checks through the checker that any new instance respects its 

invariants. Then, the checker is invoked any time the instance is updated.  

Generated getters are regular getters, returning the desired attribute.  

On the other hand, setters follow this process:  

1) Save the current instance state through the saveState generated method;  

2) Set the attribute value to the input value;  

3) Check if the instance still respects its invariants. If not, return the instance with 

its previous status, using the returnState generated method. 

 

When defining each class method, a copy of the object is generated with the nickname 

“previous”. Then, the method pre conditions are checked. If they fail, the method execution 

terminates without modifying the instance. If they succeed, the method is executed and then 

the instance invariants are checked; then if invariants do not hold, the instance is returned to 

its previous status using the created copy, having the method no effect on the instance.  

Additionally, the tests generated by MDT+ extend from the special class TestCase in 

order to apply the JUnit library [JUnit 2017]. MDT+ associates a simulated object (i.e., a 

mock object) using the Mockito library [Mockito 2017]. This tool attaches a specific 

behavior to the class instances in order to verify for each method that, if the pre conditions 

and invariants hold, the post conditions hold as well. 

Analyzing the results  

After executing the generate.mtl file, the corresponding .java classes and the .ocl file are 

generated (see figure 2 and figure 3 respectively)). Method bodies specifications written in 

OCL are translated to its corresponding Java code.  

Integration test can be run in order to check in a single step that every generated test is 

satisfied, as shown in figure 4. Regarding the generated code for each class, a part of the 

Student class code is displayed in figures 5 and 6.  
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Fig. 2.  Files generated by the Acceleo code running. 

 

Fig. 3.  Generated OCL Centralized Code.  
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Fig. 4. Integration Test code and its execution result in JUnit. 

 

 

Fig. 5. Student class and its internal checker. 
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Fig. 6. Student class generated methods. 

 

Then, figure 7 illustrates a Test that performs the validation of invariants, pre conditions, 

and post conditions. 

Improving Tests with a Richer Formalism  

The process described above allows developers to automatically obtain the code of the 

test cases from the UML models. These tests are executed dynamically while the program 

is running or during the testing phase using testing inputs, which should be obtained 

applying appropriate techniques that are out of the scope of MDT+.  
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Fig. 7. Example test: Student class method. 

At the same time, MDT+ offers another level of analysis, enabling the static checking of 

model consistency, prior to execution. Static checking is achieved by integrating the formal 

language Alloy [Jackson 2006]. Alloy is a modeling language, with formal syntax and 

semantics, based on first-order relational logic. Its main target is the formal specification of 

object-oriented models. At a glance, Alloy is similar to UML class diagrams and OCL, but 

having simpler and cleaner semantics, and being also supported by a rich analysis tool 

named Alloy Analyzer [Alloy 2017].  The Alloy Analyzer applies a bounded verification, 

limiting the number of objects that populate each class and checking assertions over the 

specification within that bound. It uses a SAT-solver to answer verification queries, 

converting them to Boolean formulas. 

MDT+ uses the AlloyMDA tool [Cunha et al 2015] to translate the generated OCL code 

to its correspondent Alloy code, from which the Alloy Analyzer is used to check 

consistency. Figure 8 shows the Alloy code obtained from the UML/OCL model in figure 

1. 

When the Alloy Analyzer is executed, the constraints to be checked within a scope 

(setting boundaries) are specified using the special command run. The potential errors will 

occur within this scope, being possible to have more/other errors outside.  That is to say, if 

an example is found, the constraints are satisfied. On the other hand, if no example is 

found, the constraints are invalid (false for every possible example), or may be valid but 

outside the specified scope. The following command raises the checking for the .als file:  

 
run enrolSubject for 4 but exactly 1 Student, exactly 1 Time 
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In this case, the constraint enrolSubject is tested with a scope that limit the search to 

those instances that have at most 4 instances of each signature, except for Student, which 

has just one object. Also, for the sake of simplicity just one time instance is considered.  

Figure 8 displays the messages returned by the tool console after running the Alloy 

analyzer. Messages include some irrelevant warnings, the analyzer configuration data, if 

some instances were found or not, the time it took to execute the analysis and its verdict. In 

this example the analyzer reported that the model is consistent and let us visualize the 

generated instance. Figure 9 shows the example that was found.  

 

 

 

Fig. 8. Alloy Analyzer results. 

 

Related Work 

Several tools provide support for automatic test code generation from software models. 

The ones most closely related to MDT+ are summarize here. 

 TestEra [Khalek et al 2011] is a Java testing framework based on formal specifications. 

To test a method, it uses the methods pre conditions specification to generate tests inputs 

and the post conditions to check the output correctness. TestEra supports specifications 

written in Alloy and uses the SAT-based back-end of the Alloy tool-set for systematic 

generation of test suites. Each test case is a JUnit test method, which performs three key 

steps: (1) initialization of pre-state, i.e., creation of inputs to the method under test; (2) 

invocation of the method; and (3) checking the correctness of post-state.  

Modeling languages UML and OCL offer a huge set of constructs. In [Hilkenet al 2014] 

an approach is proposed, using model transformations to unify different description means 

within a so-called base model. Along the transformation, complex language constructs are 

expressed with a small subset of so-called core elements. This simplification allows 

interacting with a wide range of verification engines with different advantages and 

weaknesses. 

In [Kuhlmannal 2011] a method for efficiently searching for model instances is provided. 

The existence or non-existence of model instances with certain properties allows significant 

conclusions about model properties. The approach is based on the translation of UML and 

OCL constraints into relational logic and its analysis with SAT solvers. The proposal is 

realized by integrating a model validator as a plugin into the UML and OCL tool USE. 
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Fig. 9. Model instance found by the analyzer. 

 

In [Nabuco 2014] a tool to filter/setup test cases from models is introduced. Models are 

written in a DSL called PARADIGM and consist in UI test patterns (UITP), describing the 

test objectives. To generate test cases code, the tester must provide test input data to each 

UITP in the model. The tool offers a filtering mechanism in order to generate a reasonable 

number of test cases, reducing complexity. 

In [Bucchiarone 2014] model-checking techniques are used to validate the software 

architecture model conformance with respect to selected properties, while testing 

techniques are used to validate the implementation conformance to the software 

architecture model. The specification, consisting of a topology definition and state 

diagrams, is translated to the Promela formalism where the SPIN model checker is applied. 

The Fokus!MBT tool [Wendland et al 2013] is a multi-paradigm test modeling 

environment which gives users the freedom to choose among programmatic and 

diagrammatic notations, as well as state-based and scenario-based styles, reflecting the 

different concerns in the process. The diverse model styles can be combined by model 

composition in order to achieve an integrated and collaborative model-based testing 
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process. The approach is realized in the successor of Microsoft MBT tool Spec Explorer, 

and has a formal foundation in the framework of action machines. 

Conclusion and Future Works 

The MDT+ tool allows software developers to translate a data model with formal 

constraints to its corresponding Java code, automating the generation of strong test cases 

codes and specifying them not only in the Java language but also in two formal languages, 

which are OCL and Alloy. In a few steps, a regular UML and Java user with some OCL 

knowledge can define a data model and count with the needed tools to verify whether that 

model is consistent and to automatically generate the system code with associated test-cases 

code. This tool provides more reliable support by amalgamating different analysis 

techniques, which strengthens the software validation process. While model-checking finds 

bugs in high-level system designs, testing identifies bugs in implementation level code. 

Considering the strong complementarity between those two worlds, an integration of them 

offers promising advantages. 

In comparison to the related works described before, the following advantages are 

emphasized:  

-Dual analysis: MDT+ achieves both static and dynamic analysis. 

-UML-Alloy connection: generally, the proposed tools associate UML/OCL with MDT 

or OCL with Alloy. In this case, MDT+ consistently integrates the three of them.  

-Better Tools: MDT+ is built on top of stronger and newer tools (i.e., Acceleo, Papyrus 

and Mockito), in contrast to the tools used in the previous works (i.e., MOFScript and 

EasyMock). 

-Complete process: generally, only one part of the software development process is 

automated. In this case, MDT+ provides a code ready for production which is verifiable, 

adaptable and usable for a wide range of users.  

 

MDT+ was initiated in Ilan Rosenfeld´s thesis [Rosenfeld 2016] and to extend the 

proposed solution the following lines are being considered: 

- The re-generation of automatically generated code preserving possible updates made 

for the developer will be provided. This is achieved by using special markers in the code 

text. 

- Less abstract tests will be generated without using mocks. 

- When finding an inconsistence in the source model, counterexamples in the natural/Java 

language will be generated, to improve the understandability for users with little knowledge 

in formal verification.  

-The developer will be able to select other programming language for the generated code 

(additionally to Java). 
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