

SABTIC 2018 | ISSN 2237-2970 402

Improving Model-Driven Software Testing by using Formal

Languages

Ilan Rosenfeld

 1
 and Claudia Pons

1,2,3
 and Gabriel Baum

 1

1

 Facultad de Informática, Universidad Nacional de La Plata
2
Comision de Investigaciones Científicas CIC

La Plata, Buenos Aires, Argentina.
3

Universidad Abierta Interamericana, UAI

Ciudad de Buenos Aires, Argentina.

Ilan.Rosenfeld@gmail.com, cpons@info.unlp.edu.ar, gbaum@info.unlp.edu.ar
Abstract. Model-Driven Testing or MDT is a new and promising approach for
software testing automation that can significantly reduce the efforts in the testing cycle
of a software development. It consists in a black box test that uses structural and
behavioral models to automate the tests generation process. In this paper, we describe a
tool that allows developers to translate a software model written in UML with OCL
formal constraints to its corresponding Java code, automating the generation of strong
test-cases codes and specifying them not only in Java language but also in two formal
languages, which are OCL and Alloy. This tool provides more reliable support by
amalgamating different techniques, which strengthens the testing process.
Keywords: model driven testing, UML, OCL, Java, testing, formal languages.

Abstrato. O Model-Driven Testing ou MDT é uma nova e promissora abordagem para
automação de testes de software que pode reduzir significativamente os esforços no
ciclo de testes de um desenvolvimento de software. Consiste em um teste de caixa
preta que utiliza modelos estruturais e comportamentais para automatizar o processo de
geração de testes. Neste artigo, descrevemos uma ferramenta que permite aos
desenvolvedores traduzir um modelo de software escrito em UML com restrições
formais OCL para seu código Java correspondente, automatizando a geração de
códigos de casos de teste e especificando-os não apenas na linguagem Java, mas
também em dois linguagens formais, que são OCL e Alloy. Esta ferramenta fornece
suporte mais confiável, combinando diferentes técnicas, o que fortalece o processo de
teste.

Palavras-chave: teste orientado por modelo, UML, OCL, Java, teste, linguagens
formais.

Introduction

The Model-Driven Software Development Process (MDD) [Brambilla et al 2012] [Stahl

and Voelter 2006] is a discipline that is generating a lot of expectations as an alternative to

conventional methods of software production. MDD set out a new way of understanding

development and maintenance of software systems by using models as main artifacts in the

development process. In MDD, the models are used to direct tasks related to

comprehension, design, construction, tests, deployment, operation, management,

maintenance and modification of systems. A great number of theoretical and practical

studies are involved in this approach. Moreover, experiences surveyed by´[Di Ruscio, et al

2014] and by the Object Management Group [OMG 2015] reported on existing tools that

SABTIC 2018 | ISSN 2237-2970 403

make this approach real at a commercial level, with several examples of successful

introduction of MDD in different organizations

The success of any MDD project heavily depends on the quality of the source models

that should be accurate, consistent and complete. The Unified Modeling Language [UML

2017] is a general-purpose modeling language that is intended to provide a standard way to

visualize the design of a system. The creation of UML was motivated by the desire to

standardize the heterogeneous notational systems and approaches to software design. The

UML was adopted as a standard by the Object Management Group (OMG). On the other

hand, the Object Constraint Language [OCL 2017] is a textual language with formal

foundation, based on Set Theory and First-order Logic, but with an object-oriented nature

that facilitates its understanding. OCL is the standard language to define integrity

constraints on UML models. In this way, the combination UML/OCL is considered a

formal modeling language.

The ultimate goal of MDD is to generate software automatically from the models, so that

the target software is correct by construction. However, this dream has not been achieved

yet since the generated code must usually be completed by hand, which introduces errors.

Thus the testing cycle cannot be ignored as a substantial part of the software development

process.

In this regard, one of the branches of MDD is the Model-Driven Testing (MDT) [Utting

and Legeard 2007], a new approach for software testing automation, which can

significantly reduce the efforts in the tedious testing cycle of software development. It

consists in a black box testing technique that uses structural and behavioral models to

automate the generation of test-cases code and test-cases data sets.

There exist a significant number of tools that generate code from software models, but

few of them take full advantage of what formal modeling languages offer for automation of

the testing cycle. For this reason, the construction of a new software tool to automate the

generation of test-cases code was developed using the formal foundation of the modeling

notations, in order to obtain better benefits.

This tool, named MDT+, allows developers to automatically generate Java code from

UML/OCL models, including both the system classes and their test-cases code. The

generated test-cases code is written in Java and it is executable. Additionally, test code is

enhanced with formal specifications which allow the application of model checking

techniques as a complement to testing. In this way MDT+ combines static and dynamic

formal analysis of the system, improving the efficacy of the analysis process.

The rest of the paper is organized as follows. Section 2 explains the technological

background. Section 3 describes the basic features of MDT+. Section 4 presents an

extension of the tool which improves the tests through the application of a richer

formalism. Section 5 discusses a set of related works. Finally, conclusions are presented in

section 6.

Eclipse Modeling Tools

MDT+ was developed taking advantage of a number of existing tools, in particular the

Eclipse Modeling Project [EMP 2017] that focuses on the evolution and promotion of

model-based development technologies within the Eclipse community by providing a

SABTIC 2018 | ISSN 2237-2970 404

unified set of modeling frameworks, tooling, and standards implementations. In this

section, the main Eclipse elements that were included in the development are briefly

described.

Eclipse Modeling Framework (EMF).

The Eclipse Modeling Framework [EMF 2017] includes a set of plugins that can be used

to specify a data model and generate code or other kind of output based on that model.

Papyrus.

Papyrus (2017) is a subproject component that aims to provide an integrated and usable

environment to edit any type of EMF model. Papyrus provides diagrams editors for EMF-

based modeling languages such as UML2 and offers the chance of integrating these editors

with other tools. It also offers an advanced support for profiles, allowing the user to define

standard UML2-based Domain Specific Language (DSL) editors and their extension

mechanisms.

Eclipse Acceleo.

Eclipse Acceleo (2017) is an open source code generator implementing the OMG's MOF

Model to Text Language (MTL) standard that uses any EMF-based models (e.g., UML,

SysML, domain specific models, etc.) to generate any kind of code (e.g.,Java, C, PHP,

etc.).

MDT+. A Tool for Test-cases Code Generation

In this section, we describe the characteristics of MDT+, the software tool that was built

to automate the generation of test-cases code. Starting from an OCL/UML system model,

the Java code is automatically generated, creating the classes with their corresponding test-

cases code and an OCL file which contain all the formal constraints in a centralized form.

The process is carried out in three steps, as described below following a running example.

Creating the data model with Papyrus

When creating a Papyrus project with the Eclipse IDE, a default UML class diagram will

be created in three formats: traditional model view (.di), XML annotations (.notation) and

Directories tree (.uml). The focus of the tool is on the .di file, which allows the

visualization of a traditional class diagram, such as the one displayed in figure 1. The

model in the figure represents a university institution, containing Students, Teachers,

Subjects, Careers and Careers Plans, among others.

SABTIC 2018 | ISSN 2237-2970 405

Fig. 1. Class diagram.

SABTIC 2018 | ISSN 2237-2970 406

The diagram also includes a set of OCL restrictions (the palette Constraint elements)

representing invariants associated with specific classes. For example, students are not

allowed to be enrolled in more than one career, and in order to teach a subject, teachers

must be experts on their area, which is reflected in the following OCL invariants,

Context Student

inv: self.careers -> size() ≤ 1

Context Subject

inv:

self.teachers->forAll(o| o.specialties->includes(self.area))

Additionally, the operation pre and post conditions can be specified using OCL. For

example, the following OCL expressions state that in order to enroll in a subject a student

must have already passed all its correlatives and the subject inscription is enabled,

Context Student::enrolSubject(subject)

pre:self.passedSubjects->includesAll(subject.correlatives)

pre:subject.inscriptionAllowed=true

Besides, a set of post conditions for the operation can be specified. The first one checks

that the specified subject has been actually added to the collection and the second one

specifies that the collection size is incremented in one after executing the method,

context Student::enrolSubject(subject)

post: self.subjectsIsEnrolledIn-> includes(subject)

post: self.subjectsIsEnrolledIn->size() =

self.subjectsIsEnrolledIn@pre->size()+1

A correct implementation code should hold all the invariants, pre and post conditions

defined in the model. Consequently, the test cases will check that those constraints hold

when executing the methods.

MDT+ also allows developers to define the body of each class method in a different

range of languages and formats. In the case study of this paper methods specifications are

defined in OCL, since this format is quite similar to the Java syntax, its later translation

(from the model class into the Java file) is straightforward.

Translating the UML model to Java code with Tests

MDT+ includes the following components in order to translate the UML/OCL model to

executable Java code equipped with tests:

ü Two java classes, Activator.java and Generate.java, which are configuration files,

specifying the included libraries among other things.

ü An Acceleo module called generate.mtl which contains the translation algorithm

(from UML model to java code), written in the Acceleo language.

SABTIC 2018 | ISSN 2237-2970 407

First of all the MDT+ user chooses the UML model from which generate the

corresponding classes, for example, the UML model displayed in figure 1 can be used as

the source model in the Acceleo configuration.

Then, the Acceleo algorithm loops over every class of the UML source model, and for

each one it creates two artifacts: a regular .java class and a checker class for testing

purposes. Also, the algorithm creates the integration test, which runs every individual

generated test in a single step.

In parallel, the file University.ocl is created, containing every modeled OCL constraint

associated to its context, in a centralized way.

Each internal checker class consists of two methods, respectInvariants(classInstance) and

respectCondition(condition), to chek invariants, pre and post conditions respectively.

The class constructor checks through the checker that any new instance respects its

invariants. Then, the checker is invoked any time the instance is updated.

Generated getters are regular getters, returning the desired attribute.

On the other hand, setters follow this process:

1) Save the current instance state through the saveState generated method;

2) Set the attribute value to the input value;

3) Check if the instance still respects its invariants. If not, return the instance with

its previous status, using the returnState generated method.

When defining each class method, a copy of the object is generated with the nickname

“previous”. Then, the method pre conditions are checked. If they fail, the method execution

terminates without modifying the instance. If they succeed, the method is executed and then

the instance invariants are checked; then if invariants do not hold, the instance is returned to

its previous status using the created copy, having the method no effect on the instance.

Additionally, the tests generated by MDT+ extend from the special class TestCase in

order to apply the JUnit library [JUnit 2017]. MDT+ associates a simulated object (i.e., a

mock object) using the Mockito library [Mockito 2017]. This tool attaches a specific

behavior to the class instances in order to verify for each method that, if the pre conditions

and invariants hold, the post conditions hold as well.

Analyzing the results

After executing the generate.mtl file, the corresponding .java classes and the .ocl file are

generated (see figure 2 and figure 3 respectively)). Method bodies specifications written in

OCL are translated to its corresponding Java code.

Integration test can be run in order to check in a single step that every generated test is

satisfied, as shown in figure 4. Regarding the generated code for each class, a part of the

Student class code is displayed in figures 5 and 6.

SABTIC 2018 | ISSN 2237-2970 408

Fig. 2. Files generated by the Acceleo code running.

Fig. 3. Generated OCL Centralized Code.

SABTIC 2018 | ISSN 2237-2970 409

Fig. 4. Integration Test code and its execution result in JUnit.

Fig. 5. Student class and its internal checker.

SABTIC 2018 | ISSN 2237-2970 410

Fig. 6. Student class generated methods.

Then, figure 7 illustrates a Test that performs the validation of invariants, pre conditions,

and post conditions.

Improving Tests with a Richer Formalism

The process described above allows developers to automatically obtain the code of the

test cases from the UML models. These tests are executed dynamically while the program

is running or during the testing phase using testing inputs, which should be obtained

applying appropriate techniques that are out of the scope of MDT+.

SABTIC 2018 | ISSN 2237-2970 411

Fig. 7. Example test: Student class method.

At the same time, MDT+ offers another level of analysis, enabling the static checking of

model consistency, prior to execution. Static checking is achieved by integrating the formal

language Alloy [Jackson 2006]. Alloy is a modeling language, with formal syntax and

semantics, based on first-order relational logic. Its main target is the formal specification of

object-oriented models. At a glance, Alloy is similar to UML class diagrams and OCL, but

having simpler and cleaner semantics, and being also supported by a rich analysis tool

named Alloy Analyzer [Alloy 2017]. The Alloy Analyzer applies a bounded verification,

limiting the number of objects that populate each class and checking assertions over the

specification within that bound. It uses a SAT-solver to answer verification queries,

converting them to Boolean formulas.

MDT+ uses the AlloyMDA tool [Cunha et al 2015] to translate the generated OCL code

to its correspondent Alloy code, from which the Alloy Analyzer is used to check

consistency. Figure 8 shows the Alloy code obtained from the UML/OCL model in figure

1.

When the Alloy Analyzer is executed, the constraints to be checked within a scope

(setting boundaries) are specified using the special command run. The potential errors will

occur within this scope, being possible to have more/other errors outside. That is to say, if

an example is found, the constraints are satisfied. On the other hand, if no example is

found, the constraints are invalid (false for every possible example), or may be valid but

outside the specified scope. The following command raises the checking for the .als file:

run enrolSubject for 4 but exactly 1 Student, exactly 1 Time

SABTIC 2018 | ISSN 2237-2970 412

In this case, the constraint enrolSubject is tested with a scope that limit the search to

those instances that have at most 4 instances of each signature, except for Student, which

has just one object. Also, for the sake of simplicity just one time instance is considered.

Figure 8 displays the messages returned by the tool console after running the Alloy

analyzer. Messages include some irrelevant warnings, the analyzer configuration data, if

some instances were found or not, the time it took to execute the analysis and its verdict. In

this example the analyzer reported that the model is consistent and let us visualize the

generated instance. Figure 9 shows the example that was found.

Fig. 8. Alloy Analyzer results.

Related Work

Several tools provide support for automatic test code generation from software models.

The ones most closely related to MDT+ are summarize here.

 TestEra [Khalek et al 2011] is a Java testing framework based on formal specifications.

To test a method, it uses the methods pre conditions specification to generate tests inputs

and the post conditions to check the output correctness. TestEra supports specifications

written in Alloy and uses the SAT-based back-end of the Alloy tool-set for systematic

generation of test suites. Each test case is a JUnit test method, which performs three key

steps: (1) initialization of pre-state, i.e., creation of inputs to the method under test; (2)

invocation of the method; and (3) checking the correctness of post-state.

Modeling languages UML and OCL offer a huge set of constructs. In [Hilkenet al 2014]

an approach is proposed, using model transformations to unify different description means

within a so-called base model. Along the transformation, complex language constructs are

expressed with a small subset of so-called core elements. This simplification allows

interacting with a wide range of verification engines with different advantages and

weaknesses.

In [Kuhlmannal 2011] a method for efficiently searching for model instances is provided.

The existence or non-existence of model instances with certain properties allows significant

conclusions about model properties. The approach is based on the translation of UML and

OCL constraints into relational logic and its analysis with SAT solvers. The proposal is

realized by integrating a model validator as a plugin into the UML and OCL tool USE.

SABTIC 2018 | ISSN 2237-2970 413

Fig. 9. Model instance found by the analyzer.

In [Nabuco 2014] a tool to filter/setup test cases from models is introduced. Models are

written in a DSL called PARADIGM and consist in UI test patterns (UITP), describing the

test objectives. To generate test cases code, the tester must provide test input data to each

UITP in the model. The tool offers a filtering mechanism in order to generate a reasonable

number of test cases, reducing complexity.

In [Bucchiarone 2014] model-checking techniques are used to validate the software

architecture model conformance with respect to selected properties, while testing

techniques are used to validate the implementation conformance to the software

architecture model. The specification, consisting of a topology definition and state

diagrams, is translated to the Promela formalism where the SPIN model checker is applied.

The Fokus!MBT tool [Wendland et al 2013] is a multi-paradigm test modeling

environment which gives users the freedom to choose among programmatic and

diagrammatic notations, as well as state-based and scenario-based styles, reflecting the

different concerns in the process. The diverse model styles can be combined by model

composition in order to achieve an integrated and collaborative model-based testing

SABTIC 2018 | ISSN 2237-2970 414

process. The approach is realized in the successor of Microsoft MBT tool Spec Explorer,

and has a formal foundation in the framework of action machines.

Conclusion and Future Works

The MDT+ tool allows software developers to translate a data model with formal

constraints to its corresponding Java code, automating the generation of strong test cases

codes and specifying them not only in the Java language but also in two formal languages,

which are OCL and Alloy. In a few steps, a regular UML and Java user with some OCL

knowledge can define a data model and count with the needed tools to verify whether that

model is consistent and to automatically generate the system code with associated test-cases

code. This tool provides more reliable support by amalgamating different analysis

techniques, which strengthens the software validation process. While model-checking finds

bugs in high-level system designs, testing identifies bugs in implementation level code.

Considering the strong complementarity between those two worlds, an integration of them

offers promising advantages.

In comparison to the related works described before, the following advantages are

emphasized:

-Dual analysis: MDT+ achieves both static and dynamic analysis.

-UML-Alloy connection: generally, the proposed tools associate UML/OCL with MDT

or OCL with Alloy. In this case, MDT+ consistently integrates the three of them.

-Better Tools: MDT+ is built on top of stronger and newer tools (i.e., Acceleo, Papyrus

and Mockito), in contrast to the tools used in the previous works (i.e., MOFScript and

EasyMock).

-Complete process: generally, only one part of the software development process is

automated. In this case, MDT+ provides a code ready for production which is verifiable,

adaptable and usable for a wide range of users.

MDT+ was initiated in Ilan Rosenfeld´s thesis [Rosenfeld 2016] and to extend the

proposed solution the following lines are being considered:

- The re-generation of automatically generated code preserving possible updates made

for the developer will be provided. This is achieved by using special markers in the code

text.

- Less abstract tests will be generated without using mocks.

- When finding an inconsistence in the source model, counterexamples in the natural/Java

language will be generated, to improve the understandability for users with little knowledge

in formal verification.

-The developer will be able to select other programming language for the generated code

(additionally to Java).

References

M. Brambilla, J. Cabot and M. Wimmer (2012). “Model-Driven Software Engineering in Practice”.

Morgan&Claypool Publishers ISBN: 9781608458820.

SABTIC 2018 | ISSN 2237-2970 415

T. Stahl and M. Voelter (2006). “Model-Driven Software Development”. Technology, Engineering,
Management. 1st edition. Wiley..

D. Di Ruscio, R.F. Paige and A. Pierantonio Editors (2014). Science of Computer Programming.

Special issue on Success Stories in Model Driven Engineering. Vol. 89, pp. 69-222.
Elsevier.

OMG (2015). OMG success stories. [Online]. Available:

http://www.omg.org/mda/products_success.htm, last access.
UML (2017). Unified Modeling LanguageTM (UML) [Online]. Available:

http://www.omg.org/spec/UML/

OCL (2017). The Object Constraint Language [Online]. Available:

https://www.omg.org/spec/OCL/2.4/
M. Utting and B. Legeard (2007). Practical Model Based Testing: A tools approach. Morgan

Kaufmann Publishers Inc. USA ©.

EMP (2017). Eclipse Modeling Project. [Online]. Available: https://eclipse.org/modeling
EMF (2017). Eclipse Modeling Framework EMF: [Online]. Available:

http://eclipse.org/modeling/emf/

Papyrus: (2017). Papyrus: [Online]. Available: http://eclipse.org/papyrus
Acceleo (2017). Acceleo: [Online]. Available:

https://projects.eclipse.org/projects/modeling.Acceleo

JUnit (2017). JUnit: [Online]. Available: http://junit.org/junit4/

Mockito (2017). Mockito: [Online]. Available: http://site.mockito.org/
Jackson, D. (2006): Software Abstractions: Logic, Language, and Analysis. MIT Press.

Alloy (2017). Alloy tool: [Online]. Available: http://alloytools.org/ "

A. Cunha, A. Garis, D. Riesco (2015): Translating between Alloy specifications and UML class
diagrams annotated with OCL. Software and System Modeling 14(1): 5-25 AlloyMDA:

[Online]. Available: http://sourceforge.net/p/alloymda/wiki/Home/

S. Khalek, G. Yank, L. Zhang, D. Marinovt, S. Khurshid (2011). TestEra: A tool for testing Java

Programs using Alloy specifications. 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE).

Hilken, F., Niemann, P., Wille, R., Gogolla, M (2014): Towards a base model for UML and OCL

verification. In: Boulanger, F., Famelis, M., Ratiu, D. (eds.) MoDeVVa@MODELS. pp.
59–68.

Kuhlmann, M., Hamann, L., Gogolla, M. (2011): Extensive validation of OCL models by

integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS,
vol. 6705, pp. 290–306. Springer, Heidelberg.

M. Nabuco, Ana C.R. Paiva (2014). Model-based test case generation for Web Applications. In

Proceeding of the 14th Int. Conf. on Computational Science and Its Applications — ICCSA

2014 – Vol. 8584. Springer-Verlag. New York, NY, USA.
A. Bucchiarone, H. Muccini, P. Pelliccione, and P. Pierini (2014). Model-Checking plus Testing:

from Software Architecture Analysis to Code Testing. In Proc. Int.Workshop on Integration

of Testing Methodologies,ITM ’04. LNCS n.3236.
M. Wendland, Andreas Homann, Ina Schieferdecker (2013). Fokus!MBT – A multi-paradigmatic

test modeling environment. in: ACME '13 Proceedings of the workshop on ACadeMics

Tooling with Eclipse, Montpellier, France. ACM New York, NY, USA.
Ilan Rosenfeld. (2016). “Lenguajes formales y derivación automática de código de pruebas a partir

de modelos de software con restricciones OCL”. Informatics thesis, UNLP. Argentina.

