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Abstract. The electrical activity of the heart represented by the electrocardiogram (ECG) has been

widely used for the detection of heart diseases. Long-term records require the automatic detection of

cardiac events. In this work, the detection of myocardial infarction (MI) is performed by means of novel

ECG features based on a synthesis ECG model previously described in the literature. The model consists

of a sum of five Gaussians centered on each wave of the ECG (P, Q, R, S and T). Each Gaussian is fully

specified by three parameters; location in time, amplitude and broadness. By fitting this set of Gaussians,

and performing numerical and nonlinear optimization procedures in the resulting 15-dimensional space,

we get this set of 15 parameters as features for classification. Although the model was widely used previ-

ously with different purposes, its parameters had never been used as features for heartbeat classification

even though they reflect the morphology of the ECG in an accurate manner. Physikalisch-Technische-

Bundesanstalt (PTB) database was used to validate training and testing algorithms. Data was obtained

from 48 healthy subjects (HS) and 95 patients with MI and was split into two datasets. The first dataset

contains 190 beats from 26 HS, and 140 beats from 60 patients with MI and was used to train a support

vector machine (SVM) classifier with linear kernel. The second dataset contains 88 beats from 22 HS,

and 70 beats from 35 subjects with MI and was used to provide a detection performance assessment of

the previously trained SVM. This assessment yielded an overall accuracy above 93%. The results show

the feasibility of performing the separation between infarcted beats and physiological beats based on the

new model-based features proposed. The simplicity of the linear kernel used in the SVM classifier shows

the power of the proposed features for classification tasks.
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1 INTRODUCTION

According to data from the World Health Organization (WHO) and the Ministry of Health

from Argentina, just in Argentina, over 40% of all registered deaths were due to Cardiovascular

Diseases (CVD) in 2013 Ministerio de Salud (11-07-2018). The most prevalent form of heart

disease is myocardial infarction resulting from a thrombus that obstructs blood flow in one or

more coronary arteries. The sooner thrombolytic medication such as tissue plasminogen acti-

vator or urokinase is placed into the patient’s bloodstream after the occurrence of a myocardial

infarction, the sooner an obstructive thrombus will be dissolved and some perfusion of the my-

ocardium can occur. The damage to the myocardium is strongly dependent on the length of time

that occurs prior to restoration of some blood flow to the heart muscle. This makes early de-

tection have a strong impact on the quality of life of thousands of people locally and worldwide.

The analysis of biomedical data to determine patterns describing physiological and patholog-

ical behaviors is crucial to achieve this goal. Specific algorithms must be developed to perform

the analysis and processing of the data and thus to obtain rich and useful information to trans-

fer. This information will allow the semi-automation of earlier and more accurate diagnoses,

supported by specific devices designed for that purpose. Over the years the ECG signal has

been used to assess the cardiovascular condition of humans recording electrical activity of the

heart. Several electrodes, arranged conveniently on the surface of the thorax, acquire the tem-

poral variation of the electrical potential that cardiomyocites produce. The morphology of this

record and its interpretation from the detection of its characteristic waves (so-called fiducial

points that comprise the P, Q, R, S, T waves) as well as various calculations that arise from the

detection of such waves (ST segment, QT interval, PR interval and others) allow the diagnosis

of various pathologies such as different cardiac arrhythmias, ischemic heart disease or conduc-

tion abnormalities. Therefore this type of non-invasive and low-cost analysis continues being

a fundamental tool for the cardiovascular evaluation of patients who arrive by spontaneous de-

mand to the emergency rooms of any health center.

As mentioned before the study of the ECG signal provides substantial information of the

heart function so modelling ECG signal becomes very useful for different purposes such as char-

acterization, compression or classification, all of them, problems of concern for the biomedical

engineering community. Among the works that have dealt with the idea of modeling the wave

sequence in an ECG, to extract and recognize patterns, we can mention the articles Sornmo

et al. (1981); Lagerholm et al. (2000) which proposes a model and classification method for

the QRS complex (formed by the Q wave, the R wave and the S wave) using an orthonormal

basis of Hermite functions. Baali et al. (2014) propose a parametric model based on orthog-

onal transformations, that involves the mapping of the ECG in the domain of singular values,

whereas Philips and De Jonghe (1992) apply a polynomial approximation for the compression

of ECG data. Suppappola et al. (1997) focus on the modeling of ECG waves with Gaussian

pulses. Thus, an ECG cycle results in a sum of such Gaussian pulses. Each Gaussian is char-

acterized by its location, its amplitude and its width. The mentioned work Suppappola et al.

(1997) presents an iterative algorithm to approximate a given ECG by means of this model,

estimating the necessary parameters. One of the parameters to be determined is the number of

pulses that are needed to achieve a good representation for a given real ECG.

The work of Clifford et al. (2005) uses 5 Gaussian functions, one for each characteristic
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wave and McSharry et al. (2003) proposes a dynamical model whose solution trajectories re-

produce realistic synthetic ECG waves. The model generates a trajectory in the space of states

(x, y, z). The approximate quasi-periodicity is reflected by the movement of the path around

an attractive boundary cycle, a unit circumference in the (x, y) plane. Each beat is represented

with a revolution around this limit cycle. Thus, the model remains dependent on 3M morpho-

logical parameters, where M is the number of Gaussian functions involved. In Clifford and

McSharry (2005) a method to find the parameters that best reproduce a real given beat is pro-

posed, thus achieving compression with loss. The parameter adjustment is carried out using

non-linear optimization (gradient descendent method) to minimize the Euclidean distance be-

tween the data and the simulated model (least squared error methodology). This would allow,

according to the mentioned authors, to predict the performance of the model in a segment of an

ECG and facilitate the rejection of beats for a specific study. The deviation of these parameters

with respect to the physiological parameters would thus indicate a change in the morphology

of the ECG constitutive waves, showing alterations that point out or suggest certain patholo-

gies. The model then allows the 3M-dimensional representation of any ECG, physiological or

pathological, which can then be used not only in filtering schemes that require a model but in

compression, clustering and / or pattern classification applications to ECG signals in the men-

tioned space Clifford et al. (2005); Clifford and McSharry (2005).

In the present work we extract features of normal and pathological ECG beats in a paramet-

ric way fitting the heartbeat with a sum of Gaussian curves using two techniques: the classical

Least Squares Method and our new method based on Monte Carlo simulation ideas Liberczuk

and Bergamini (2017). Finally we use McSharry model parameters (very known in the literature

before but never with this purposes) in order to represent and classify ECG signals coming from

48 healthy subjects and 95 patients with MI. The objective is to classify and separate physio-

logical from mycardial infarction beats using a linear kernel SVM (Support Vector Machine).

2 MATERIALS AND METHODS

2.1 Parameter estimation

The features we will use to classify heartbeats are model parameters, that arise from a heart-

beat model proposed by Clifford and Mc Sharry Clifford et al. (2005); McSharry et al. (2003),

which is widely utilized in the literature. The model assumes that each heartbeat in a ECG is

modeled by a set of Gaussian waves, characterized by their amplitude, position and width.

The model can be stated as

z(k) =
∑

i=P,Q,R,S,T

aie
−(k−θi)

2

2b2
i (1)

where θi is the position of the corresponding wave peak, ai corresponds to the wave am-

plitude and bi corresponds to wave width. Given a real signal s(k), we want to obtain the set

of parameters in Eq. 1 that best represents that signal. They could be calculated as those that

minimize the squared error between the mentioned signal s(k) and the parametric model z(k).

argmin
ai,bi,θi

‖z(k)− s(k)‖2 (2)

The problem stated in Eq. 2 is nonlinear, and it is highly likely to have many suboptimal

Mecánica Computacional Vol XXXVI, págs. 1807-1814 (2018) 1809

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



solutions. It can be solved by a local optimization algorithm, but a good initial point should be

provided such that the solution be reliable. Otherwise, a global optimization algorithm may be

applied to solve Eq. 2. In our previous work Liberczuk and Bergamini (2017) we propose an

heuristic global optimization, based on a Monte Carlo search. This type of approach avoids the

problem of getting stuck in local minimum, since it permits random exit of suboptimal neigh-

borhood.

2.2 Data Base

Real signals were taken from internationally validated databases such as the Physikalisch-

Technische Bundesanstalt (PTB) ECG Database available in Physio-Bank Goldberger et al.

(2000 (June 13); PTB Database (22-03-2018). The National Metrology Institute of Germany

has provided this compilation of digitized ECGs for research, algorithmic benchmarking or

teaching purposes to the users of PhysioNet. The ECGs were collected from healthy volunteers

and patients with different heart diseases by Professor Michael Oeff, M.D., at the Department of

Cardiology of University Clinic Benjamin Franklin in Berlin, Germany. It contains records of

52 healthy subjects and 148 patients with myocardial infarction and also provides some patients

with other pathologies like Cardiomyopathy, Bundle branch block, Dysrhythmia, Myocardial

hypertrophy and Valvular heart disease. The ECGs are digitized at 1Khz, with 16 bits resolution

over a range of 16,384mV. Each record includes the 12 simultaneous leads and the orthogonal

leads of Franz. The patient’s medical history is available. We have selected 278 heartbeats

from healthy patients and 210 heartbeats from patients who have suffered anterior myocardial

infarction.

2.3 Parameter collection

Single lead ECG Data (Lead 2) was extracted from the PTB Database described in the pre-

vious section. This records were all preprocessed with 5th-order Butterworth highpass filter

(Fc=0,5 Hz) for baseline wander rejection. A peak-detection algorithm was then applied to

each signal, to isolate beats. R-peaks were detected in the array with Pan-Tomkins algorithm

for QRS detection Pan and Tompkins (1985). From each record, a set of beats were selected

and the optimization process indicated in Eq 2 was solved for each selected beat. The beats

were normalized (uniformly scaled ) to have all the same length. Thus, position parameters ac-

tually represents the relative peak position inside the beat. The 15-dimensional parameter array

X = [aP , . . . , aT , θP , . . . θT , bP , . . . , bT ] that represents each beat was first saved in a parameter

vector and then appended to a file. Beat classification was carried on applying a Support Vector

Machine (SVM) to the set of features acquired. In this first attempt, we worked on a two-class

classification scheme that will be explained in the next section.

2.4 Classification

We have implemented a SVM algorithm for binary classification to classify the set of pa-

rameters that we collected from the heartbeats of the diferent subjects described in the previous

section. The selected kernel was a linear kernel because it gave excellent results so it was no

necessary to increase the complexity.
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SVM is a supervised machine learning algorithm, well suited for classification or regression

problems Awad and Khanna (2015). The algorithm consists of 2 stages, the training and the

testing stage.

In the training phase of this algorithm, each feature vector is considered as a point in a N-

dimensional space (N=15 in our case), labeled with its corresponding class label (HS healthy

subject beat or Myocardial Infarction MI beat). The algorithm finds the hyper-plane that best

separates these two classes, by maximizing a margin function that accounts for the separation

between the points in both classes. In the testing phase, new vectors are evaluated, to determine

in which side of the space they lie, and thus assigning the corresponding class label.

In some cases, the data is not completely separable. For these cases, a penalty cost is added

to the margin function, penalizing points that lie in the wrong half-space. There are also cases

when data is not linearly separable in the original feature space. For those cases, separation is

made in a higher dimensional space. It is performed after projecting data vectors into a new

space, using a kernel function. In the new space, the points are separated with a hyper-plane

that represents a nonlinear separation frontier in the original feature space. In our problem, we

found that SVM was able to linearly separate data in the 15-dimensional space, as results show

in the next section.

The training dataset was built with 190 beats from 26 HS, and 140 beats from 60 patients

with MI. The testing dataset contained 88 beats from 22 HS, and 70 beats from 35 subjects with

MI and was used to provide a detection performance assessment of the previously trained SVM.

3 RESULTS

We load the parameter file that resulted from the parameter collection process described in

the previous section and run 10 times using different set of beats randomly taken for training,

and leaving the rest for testing. Then we classified the test beats obtaining an average classifi-

cation rate of 93% over the 10 trials.

To evaluate the classification performance, we report the statistical measures in Table 1.

For the only purposes of possible graphing and visualization we have selected three 2-

dimensional graphs to show the relative position of the parameters in each class.

Figure 1 shows the classification results for the testing data in the two dimensional parameter

plane aP vs. aR. These parameters represent amplitudes in the P-wave and the R-wave respec-

tively. Figure 2 shows the classification of testing data in the two dimensional parameter plane

bP vs. bS . These parameters represent widths in the P-wave and the S-wave respectively. Figure

3 shows the testing classification in the space bP vs. bT . These parameters represents widths in

the P-wave and the T-wave respectively.
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Figure 1: Testing results: aP vs. aR parameter space
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Figure 2: Testing results: bP vs. bS parameter space

Table 1: Statistical Measures

Sensitivity (true positive rate - TPR) 0.957

Specificity(true negative rate - TNR) 0.909

Precision (positive predicted value - PPV) 0.893

Negative predicted value (NPV ) 0.964

Accuracy (ACC) 0.93
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Figure 3: Testing results: bP vs. bT parameter space

4 DISCUSSION

We found that SVM with a linear kernel could very accurately classify the heartbeat charac-

teristics of healthy subjects from the characteristics of non-physiological heartbeats.

In the figures you can see that the points in both classes were grouped into two regions.

The regions do not seem to be completely defined, but we must bear in mind that they are

two-dimensional projections of the space of original parameters. It can also be seen that the

parameters that were erroneously classified (both false positives and false negatives, a 7 % of

the total test parameters), are located at the edge of the grouping regions. It is reasonable to

think that the points near the separation hyperplane do not show a clear pattern for the classes

considered, and then the SVM algorithm could confuse them. These poorly coded patterns

could be due to factors in the generation stage of the characteristics (parameter estimation), that

is, suboptimal representation of the heartbeat.

In Table 1 we can see that the True Positive Rate (TPR) is almost 96 %, this rate is higher

than the True Negative Rate (TNR) which is almost 91 %. This is an important point because

the algorithm better detects the cases that require attention i.e. people with myocardial infarc-

tion. In contrast, 91 % of TNR means that for 9 % of healthy subjects, the SVM would detect it

erroneously as infarction, but this case would not be so serious because those subjects could be

observed with other studies and later determined they were in good condition.

5 CONCLUSIONS AND FUTURE WORK

We have used novel features for classification of ECG beats with Anterior Myocardial In-

farction (AMI) from ECG beats coming from healthy subjects. The results have shown the

feasibility of performing the separation between infarcted beats and physiological beats based

on these new model-based features proposed. The simplicity of the linear kernel used in the

SVM classifier shows the power of the proposed features for classification tasks. In the future

we will incorporate more pathologies such as Bundle Branch Block or Myocardial Hypertrophy
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as well as other types of infarction, and the possibility to work with more than two classes in

the classification task.
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