gNOVIEMBRE

maticy
so* ‘S,
A '9(,(

%

wngenier;,

UTN Departamento de Ingenieria
en Sistemas de Informacién

|
FACULTA
REGICHA

MENDOZI

L LY
confedi M

Consejo Federal de Decanos de Ingenieria

9° Congreso Nacional de
Ingenieria Informatica/Sistemas de Informacion

CoNallSsl
4y 5 de noviembre de 2021

Universidad Tecnoldgica Nacional

Facultad Regional Mendoza

Memoria de Trabajos

9° Congreso Nacional de Ingenieria Informatica/Sistemas de Informacion

9° CoNallSI: Memorias de trabajos / Compilacidon de Marcela Fernandez; Matilde
Césari; Maria Gabriela Martinez. - 1a ed. —

Ciudad Autéonoma de Buenos Aires: Universidad Tecnoldgica Nacional, 2022.
Libro digital, PDF

Archivo Digital: descarga y online
ISBN 978-950-42-0213-4

1. Sistemas de Informacion. 2. Ingenieria Informatica. |. Fernandez, Marcela, comp. Il.
Césari, Matilde, comp. Ill. Martinez, Maria Gabriela, comp. IV. Titulo
CDD 004.0711

Compilacion de: Fernandez, Marcela
Césari, Matilde
Martinez, Maria Gabriela

Revisado por: Carbonari, Daniela
Caymes Scutari, Paola
Bianchini, German

ISBN 978-950-

|| || iii[|||||| |||
7895 202134

Auspiciantes:

9

w¥ _
AR . UTN | Departamento de Ingenieria {)Y
confedi { rufic :
sl SR aen Sistemas de Informacion } i

Controller Synthesis for 1oT Protocols Verification

Fernando Asteasuain ~

1,2

'Universidad Nacional de Avellaneda- fasteasuain@undav.edu.ar
Universidad Abierta Interamericana - Centro de Altos Estudios CAETI

Abstract

Almost every modern device or artifact can now send
and/or receive information and data. This hyper connected
modern era is commonly denominated Internet of Things
(IoT). Software Engineering tools and techniques must be
adapted to manage the new challenges and requirements
that the emergent paradigm of IoT imposes, especially
regarding to communications, interactions and protocols
between those artifacts. In this work we focus on a very
well known formal technique called Controller Synthesis,
which features interesting characteristics to formally
verify lot systems. In particular, we specified and
synthesized the behavior of a key protocol for IoT, the
MQQT protocol, employing the FVS formal verification
framework.

Keywords: IoT, Formal Verification, Synthesis.

1. Introduction

The amazing growth of the so called Internet of Things
(Iot) initiated a challenging revolution in the Software
Engineering Community. Almost every device can now be
integrated and controlled by a software system by adding
sensors to it that capture and communicate information
from the device to a centralized system. These new kind of
integrated and reactive systems represent the leading role
of emerging and cutting edge technologies such as
Industry 4.0 [1] or Machine to Machine (M2M)
interactions [2].

In these systems communications and interactions
between artifacts play a crucial role. Therefore, analyzing,
reasoning and verifying the protocols used to
communicate artifacts are key activities [3-8]. Two of the
most used protocols for the IoT systems are the Message
Queue Telemetry Transport (MQTT') and the Constrained
Application Protocol (CoAP).

MQQT protocol is based on the classical architectural
pattern Publish/Subscribe whereas CoAp is based on a

" http://docs.oasis-open.org/mqtt/mqtt/v5.0/
2 https://coap.technology/

client/server fashion and is specially used in domains like
such as smart energy and building automation [3, 4]. In the
publish/subscribe architecture processes that produces the
information or data publish in an intermediate buffer
which in turn, passes the information to other processes
interested in it. Processes interested in receiving the
information must previously subscribe to the intermediate
buffer.

A plethora of approaches aim to formally prove the
correctness and soundness of IoT protocols [3-8, 21-23,
26]. In few words, these approaches apply tools such as
modern model checkers to verify the expected behavior of
the protocols. Several formalisms like probabilistic
automata [24], temporal logics, Temporal Logics of
Actions [16] or process algebra are employed [25].

However, to our best knowledge, a very well known
formal verification technique called Controller Synthesis
[9-10] has not been widely applied in this domain.

Controller synthesis offers attractive features to be
considered in the IoT domain. First of all, it is heavily
oriented to event-based systems. Secondly, it takes into
consideration not only the system but also the environment
where the system lives. This is called Open Systems [11],
and actions are divided into controllable (those governed
by the system) and uncontrollable (those governed by the
environment).

When applying synthesizing algorithms the system is
built in a way such its behavior fulfills the specification by
construction. This is achieved by employing game theory
concepts: a game between the systems versus the
environment. A controller (of the system) is built for the
specified behavior if a winning strategy is found, an
strategy that leads the system to a winning state no matter
what move the environment choose. If a controller is
found, there it is guaranteed that it fulfills the
specification. Otherwise, conditions and behavior should
be revisited in order to try a new version. Usually, the
controller takes the form of an automaton that decides
which action to take considering the inputs gathered by the
system’s sensors.

In domains such as IoT Protocols where multiple
factors arise such as hardware failures and/or,
environment’s unstable conditions, the possibility to
build automatically the system with the strong

321

guarantee that it fulfills the specification it is worth to
be explored.

Given this context in this work we explore a powerful
and expressive behavior and synthesis framework called
Feather Weight Visual Scenarios (FVS) [12] in the IoT
domain.

FVS is a graphical specification language based on
events, and features an expressive and simple notation. In
FVS behavior can be denoted by both linear and branching
properties, and is more expressive than classical temporal
logics such as Linear Temporal Logic (LTL) [12]. FVS
graphical scenarios can be translated into Biichi automata,
enabling the possibility of interacting with model checker
and synthesis tools like GOAL [16] or LTSA [19].

In particular, we specified the behavior of the
MQQT protocol and we automatically obtain a
controller using known external tools.

The rest of this work is structured as follows. Section2
briefly presents the FVS framework. Section 3 shows FVS
in action by specifying the behavior of the MTTQ protocol
and detailing how a controller for the system is built.
Section 4 and 5 present related and future work while
Section 6 concludes the paper by presenting some final
observations.

2. FVS: Feather Weight Visual Scenarios.

In this section we will informally describe the standing
features of Branching FVS, a simple branching extension
of the FVS language [12]. The reader is referred [12] for a
formal characterization of the language. FVS is a graphical
language based on scenarios. Scenarios are partial order of
events, consisting of points, which are labeled with a logic
formula expressing the possible events occurring at that
point, and arrows connecting them. An arrow between two
points indicates precedence of the source with respect to
the destination: for instance, in Figure 1-a A-event
precedes B-event.

We use an abbreviation for a frequent sub-pattern: a
certain point represents the next occurrence of an event
after another. The abbreviation is a second (open) arrow
near the destination point. For example, in Figure 1-b the
scenario captures the very next B-event following an A-
event, and not any other B-event. Conversely, to represent
the previous occurrence of a (source) event, there is a
symmetrical notation: an open arrow near the source
extreme. For example, in Figure 1-c the scenario captures
the immediate previous occurrence of a B-event from the
occurrence of the A-event, and not any other B-event.
Events labeling an arrow are interpreted as forbidden
events between both points. In Figure 1-d A-event
precedes B-event such that C-event does not occur
between them. FVS features aliasing between points.
Scenario in 1-e indicates that a point labeled with A is also
labeled with A A B. It is worth noticing that A-event is

repeated on the labeling of the second point just because of
FVS formal syntaxes [12].

Finally, two special points are introduced as delimiters
to denote the beginning and the end of an execution. These
are shown in Figure 1-f.

4 B
4 2 4 I N
L] [] [> @ L] L]
() Precedence (0) Next (c) Previous (d) Forbidden Behavior
- Aiam B, . Beginning of execution
S (®) Ending of Execution
(e) Aliasing (1 Delimiters

Figure 1. Basic Elements in FVS.

2.1 FVS rules

We now introduce the concept of FVS rules, a core
concept in the language. Roughly speaking, a rule is
divided into two parts: a scenario playing the role of an
antecedent and at least one scenario playing the role of a
consequent. The intuition is that if at least one time the
trace “matches" a given antecedent scenario, then it must
also match at least one of the consequents. In other words,
rules take the form of an implication: an antecedent
scenario and one or more consequent scenarios.

Graphically, the antecedent is shown in black, and
consequents in grey. Since a rule can feature more than
one consequent, elements which do not belong to the
antecedent scenario are numbered to identify the
consequent they belong to.

Two examples are shown in Figure 2 modeling the
behavior of a client-server system. The rule in the top of
Figure 2 establishes that every request received by a server
must be answered, either accepting the request
(consequent 1) or denying it (consequent 2). The rule at
the bottom of Figure 2 dictates that every granted request
must be logged due to auditing requirements.

Request-Granted
1

Request-Received

1

Request-Denied
2

2

Request-Granted

Request-Logged
P 1

1

Figure 2. FVS rules.

322

2.2 Synthesizing Behavior in FVS

FVS specifications can be used to automatically obtain
a controller employing a classical behavioral synthesis
procedure. We now briefly explain how this is achieved
while the complete description is available in [27-28].

Using the tableau algorithm detailed in [12] FVS
scenarios are translated into Biichi automata. Then, if the
obtained automata is deterministic, then we obtain a
controller using a technique [13] based on the specification
patterns [14] and the GR(1) subset of LTL. If the
automaton is non deterministic, we can obtain a controller
anyway. Employing an advanced tool for manipulating
diverse kinds of automata named GOAL [16] we translate
these automata into Deterministic Rabin automata. Since
synthesis algorithms are also incorporated into the GOAL
tool using Rabin automata as input, a controller can be
obtained.

Although this gain in expressiveness come with an cost
in terms of performance due to the size of the involved
automata we believe its crucial being able to express all
type of behavioral properties.

3. A controller for the MQTT protocol

In this section we showed how a controller system for
the MQTT protocol is obtained using the FVS framework.
We first specified through FVS rules the behavior of the
protocol and then a controller is found applying the tools
described in Section 2.2

Message Queue Telemetry Transport (MQTT) can be
seen as an open-source Machine-to-Machine (M2M)
protocol. Communications and interactions between the
involved parts (clients and servers/brokers) are carried out
employing a classical publish/subscribe architectural
pattern. This pattern allows decoupling those processes
that generates the information from those processes that
receives the information.

The behavior of the protocol is codified employing
control packages and three different flavors for Quality of
Services are available [4]. In the first one (QoS0), called
“at most once” packages can be lost; in the second one
(QoS1, called “at least one”) there is a guarantee that
packages will always arrive but package duplication can
occur and finally in QoS2 packages will always arrive
without duplication. The desired QoS will depend on the
environments conditions where the protocol will be
deployed. For example, in most rustic conditions QoS0
can be used and in most critical scenarios where is no
place to lose or duplicate packages QoS2 should be
employed. When an MQTT connection is made, all the
processes will first decide the QoS chosen as a part of the
connection setting.

We specified the MQQT behavior in two categories.
Rules for managing control packages and rules for the
QoS level. In what follows we illustrate some rules in both
categories. Rules in Figure 3 deals with the CONNECT

package. This packet must be the first one received by the
server after the establishment of a network. Additionally,
this packet must not be received more than once time. If
that happens, a violation of the protocols occurs and the
client is disconnected. We use the OtherMessage event as
a syntactic short-cut to indicate the occurrence of any other
event except CONNECT.

network connect
° not OtherMessage 1

connect connect violation and disconnect

not disconnect

o———»0
Figure 3. Rules for the CONNECT package.

Figure 4 deals with the acknowledge of the connection
package: CONNACK. Either a connection is established
or a timeout occurs and the network is closed.

connect connack
1
L4 1
timeout closeNetwork
2 2

2 2

Figure 4. Rules for the CONNACK package.

Similarly, Figure 5 addresses the acknowledge of the
PUBLISH package. The PUBACK is the expected
response to a PUBLISH package, and after a PUBLISH
package the desired QoS is settled.

publish puback publish

puback and qgosO
Y 1 Y 1 1

puback and gosl
2

>

pubback and qgos2
v 3

Figure 5. Rules handling the PUBLISH interaction.

In Figure 6 some rules describing typical reply
packages are shown. PUBREC is the response to a
PUBLISH packet with QoS2, PUBREL is the response to
a PUBREC packet, PUBCOMP is the response to a
PUBREL packet and finally, PINGRESP is the response to
a PINGREQ packet. Also a rule requiring that no
messages can be sent after disconnection is also shown in
Figure 6.

323

uback and qos2 ubrec o y
P q P h pubrec pubrel
[J ! PY | 1
pubrel pubcomp
° U
pingreq pingresp disconnect
° L, e

not OtherMessage @

Figure 6. Rules for typical response packages.

The last rules shown in this paper for the package
category handles subscriptions to the publish/subscribe
buffer (see Figure 7). SUBACK and UNSUBACK
packages stand for the acknowledges of the subscription
and unsubscribe actions. Also, the level of QoS is defined
after a subscription is made.

subscribe qos0 or qos1 or qos2
1
® I
subscribe suback unsubscribe unsuback
1 1
o o

1 1

Figure 7. Rules for Subscribing and Unsubscribing.

Finally, FVS rules for managing the desired QoS are
exhibited in Figure 8.

publish
\ 1
qos0 packageSent
° >> @ lost
5 2
qosl packageSent pubback
1
o———©0 !
2 packageSent bback
qosz P & not packageSent plu (110

e—>©
Figure 8. Rules for defining the expected QoS

Some additional rules shaping interactions of the
artifacts must also be added. Three examples are shown in
Figure 9.

network publish
1 1
o
subscribe unsubscribe
1 1
o
connect connack
1 1
o

Figure 9. A few extra rules

The rules in Figure 9 say that artifacts cannot publish
without establishing a connection (represented by the
network event), that artifacts can only unsubscribe if they
were subscribed first, and that a CONNACK package con
only occur if a CONNECT package occurred previously.

3.1 Obtaining a MQQT controller

With all the rules describing the behavior of the MQTT
protocol we obtain a controller using the GOAL tool[16].
Since a controller could be found, then it is guaranteed by
construction that it fulfills the specification. Figure 10
shows part the of controller’s automaton for the
server/broker side.

Figure 10. Part of MQQT Server Controller.

324

Similarly, Figure 11 exhibits part of the behavior of the
controller for an MQTT client.

Figure 11. Part of MQQT Client controller.

4. Related Work

Work in [3] presents an appealing survey on formal
verification and validation techniques for IoT systems. The
techniques are divided into different categories according
to the analysis they perform: those analyzing models,
those analyzing code, those combining models and code
and finally, those performing testing on the systems. In
addition to the MQQT protocol, the CoAp protocol is also
studied.

Several approaches like [21-23] formally verify IoT
protocols focusing on security aspects.

Work in [4] applies model checking techniques to
verify the behavior of the MQQT protocol. Two different
paths are taken. The first one employs semi-formal models
based on UML whereas the second one is based on
probabilistic automata.

Research in [5] also formally verified the MQTT
protocol using model checkers. Two formalisms are
employed: Temporal Logics of Actions [16] and PlusCal
[17]. Other interesting works employing model checking
are [6-8, 20, 26]. In particular, verification in [26] is
achieved through the use of coloured Petri Nets—based
models, and a captivating incremental application of
model checking levels.

We share with all these approaches the intention to
formally verify IoT protocols. However, they are not
aimed to automatically obtain a controller like our work.

We took into consideration behavior synthesis besides
behavioral verification.

Work in [18] also considers synthesis in the IoT
Domain. It proposes a novel technique to obtain an
intermediary called Mediator between all the artifacts in
the system to decouple communications and interactions.
They are focused in the middleware layer and it is
intended for the codification phase. It is based on the Data
eXchange (DeX) formalism.

On the contrary, our work proposes a more general
scheme, not only for code and not exclusively for
middleware. It would be interesting to compare FVS
expressive power against DeX to see the power of a
potential combination between both approaches.

5. Future Work

Regarding future work we would like to extend our
research in several directions.

For one side, we would like to take one step further the
controller synthesis approach by employing code
generators tools like [13]. This would imply obtaining not
only an automaton but also an actual working
implementation obtained directly from the specifications.

For the other side, we would like to compare FVS
against other approaches like the ones mentioned in
Section 4 considering execution time, expressive power
and space. This latter aspect could be compared analyzing
the size of the automata.

Finally, we would like to extend our empirical
validation by adding more case of studies. Our short-term
objective is to formally synthesize the behavior of the
CoAP protocol.

6. Conclusions

Protocols shape the way different artifacts
communicate and interact. They establish how and when
information and data must be sent, and by whom. In
domains like IoT, where unstable conditions of the
environment are usual, verifying that the protocol respect
and satisfy its specification is a crucial activity. This is a
fertile ground to apply Behavioral Synthesis tools, since
the system is built automatically in such a way that the
specification is fulfilled by construction.

In this work we introduce the FVS framework as a
powerful tool to denote, specify, verify and synthesize
behavior in the IoT domain.

In particular, we specified the complete behavior of
one of the most used protocols in the IoT world: the
MQQT protocol. Additionally, a controller for the system
was automatically obtained.

325

References

[1] Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann,
M. (2014). Industry 4.0. Business & information systems
engineering, 6(4), 239-242..

[2] Ghavimi, F., & Chen, H. H. (2014). M2M communications in
3GPP LTE/LTE-A networks: Architectures, service
requirements, challenges, and applications. IEEE
Communications Surveys & Tutorials, 17(2), 525-549..

[3] Hofer-Schmitz, K., & Stojanovi¢, B. (2019, November).
Towards formal methods of IoT application layer protocols.
In 2019 12th CMI conference on cybersecurity and privacy
(CMI) (pp. 1-6). IEEE.

[4] Houimli, M., Kahloul, L., & Benaoun, S. (2017, December).
Formal specification, verification and evaluation of the
MQTT protocol in the Internet of Things. In 2017
International conference on mathematics and information
technology (ICMIT) (pp. 214-221). IEEE.

[5] Shkarupylo, V., Kudermetov, R., Timenko, A., & Polska, O.
(2019, October). On the aspects of IoT protocols
specification and verification. In 2019 IEEE International
Scientific-Practical Conference Problems of
Infocommunications, Science and Technology (PIC S&T)
(pp- 93-96). IEEE.

[6

=

J. Hcine and 1. B. Hafaiedh, “Formal-based modeling and
analysis of a network communication protocol for iot: Mqtt
protocol,” in International conference on the Sciences of
Electronics, Technologies of Information and
Telecommunications. Springer, 2018, pp. 350-360.

[7] M. Diwan and M. D’Souza, “A framework for modeling and
verifying iot communication protocols,” in International
Symposium on Dependable Software Engineering: Theories,
Tools, and Applications. Springer, 2017, pp. 266-280

[8] 311 A. J. Vattakunnel, N. S. Kumar, and G. S. Kumar,
“Modelling and verification of coap over routing layer using
spin model checker,” Procedia Computer Science, vol. 93,
pp- 299 — 308, 2016, proceedings of the 6th International
Conference on Advances in Computing and
Communications. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S187705091
6314557

[9] Asarin, E., Maler, O., Pnueli, A., & Sifakis, J. (1998).
Controller synthesis for timed automata. IFAC Proceedings
Volumes, 31(18), 447-452.

[10] D'Ippolito, N. R., Braberman, V., Piterman, N., & Uchitel,
S. (2010, November). Synthesis of live behaviour models. In
Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering (pp. 77-
86).

[11] Baresi, L., Di Nitto, E., & Ghezzi, C. (2006). Toward open-
world software: Issues and challenges. Computer, 39(10), 36-
43.

[12] Asteasuain, F., & Braberman, V. (2017). Declaratively
building behavior by means of scenario clauses.
Requirements Engineering, 22(2), 239-274.

[13] S. Maoz and J. O. Ringert. Synthesizing a lego forklift
controller in gr (1): A case study. arXiv preprint
arXiv:1602.01172, 2016.

[14] M. Dwyer, M. Avrunin, and M. Corbett. Patterns in property
specifications for finite-state verification. In ICSE, pages
411-420, 1999.

[15] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N.Wu, and W.-C.
Chan. Goal: A graphical tool for manipulating biichi
automata and temporal formulae. In TACAS, pages 466-471.
Springer, 2007.

[16] J. E. Johnson, D. E. Langworthy, L. Lamport, and F. H.
Vogt, “Formal specification of a web services protocol,”
Electronic Notes in Theoretical Computer Science, vol. 105,
pp. 147-158, December.2004.

[17] L. Lamport, “The PlusCal algorithm language,” in 6th Int.
Colloquium on Theoretical Aspects of Computing, part of
LNCS, Kuala Lumpur, Malaysia, vol. 5684, Aug. 2009, pp.
36-60.

[18] Bouloukakis, G., Georgantas, N., Ntumba, P., & Issarny, V.
(2019). Automated synthesis of mediators for middleware-
layer protocol interoperability in the IoT. Future Generation
Computer Systems, 101, 1271-1294.

[19] Uchitel, S., Chatley, R., Kramer, J., & Magee, J. (2003,
April). LTSA-MSC: Tool support for behaviour model
elaboration using implied scenarios. In International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (pp. 597-601). Springer, Berlin,
Heidelberg.

[20] B. Aziz, “A formal model and analysis of an iot protocol,”
Ad Hoc Networks, vol. 36, pp. 49 — 57, 2016. [Online].
Available:
http://www.sciencedirect.com/science/article/pii/S157087051
5001183

[21] D. Q. Federico Maggi, Rainer Vosseler, “The fragility of
industrial iot’s data backbone. security and privacy issues in
mqtt and coap protocols,” 2018, accessed at: 2019-08-29

[22] L. Nastase, “Security in the internet of things: A survey on
application layer protocols,” in 2017 21st International
Conference on Control Systems and Computer Science
(CSCS). IEEE, 2017, pp. 659-666.

[23] S. Arvind and V. A. Narayanan, “An overview of security in
coap: Attack and analysis,” in 2019 5th International
Conference on Advanced Computing & Communication
Systems (ICACCS). IEEE, 2019, pp.655-660.

[24] Rabin, M. O. (1963). Probabilistic automata. Information
and control, 6(3), 230-245.

[25] Cleaveland, R., & Hennessy, M. (1990). Priorities in process
algebras. Information and Computation, 87(1-2), 58-77.

[26] Rodriguez A., Kristensen L.M., Rutle A. (2019) Formal
Modelling and Incremental Verification of the MQTT IoT
Protocol. In: Koutny M., Pomello L., Kristensen L. (eds)
Transactions on Petri Nets and Other Models of Concurrency
XIV. Lecture Notes in Computer Science, vol 11790.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
662-60651-3 5

[27] F. Asteasuain, F. Calonge, and M. Dubinsky. Exploring
specification pattern based behavioral synthesis with scenario
clauses. In CACIC, 2018.

[28] F.Asteasuain, F.Calonge,P.Gamboa , Behavioral Synthesis
with Branching Graphical Scenarios. In CONAIISI 2019.

326

9° CoNalliSl
2021

Congreso Nacional de
Ingenieria Informatica y
Sistemas de Informacidn

