

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay
 10mo. Congreso Nacional de Ingeniería Informática y Sistemas de Información /
compilación de Adrián Callejas ... [et al.]. - 1a ed. - Ciudad Autónoma de Buenos Aires
: Universidad Tecnológica Nacional, 2022.
 Libro digital, PDF

 Archivo Digital: descarga y online
 ISBN 978-950-42-0218-9

 1. Tecnología Informática. I. Callejas, Adrián, comp. II. Título.
 CDD 004.071

10 mo. Congreso Nacional de
Ingeniería Informática / Sistemas de Información

3 y 4 de Noviembre 2022
Facultad Regional Concepción del Uruguay

Formalizing Operating Systems for nano satellites On Board Computers

Fernando Asteasuain
1,2

1
Universidad Nacional de Avellaneda- fasteasuain@undav.edu.ar

2
Universidad Abierta Interamericana - Centro de Altos Estudios CAETI

Abstract

In this work we provide a formal verification of the

FreeRTOS operating system. Even most, a controller for

the system is found. FreeRTOS is one of the most used

operating systems for On Board Computers (OBC) in nano

satellites such as CubeSats. Exploring, verifying and

understating the potential and limitations of OBC

operating systems is crucial for the growth of one of the

most promising domains in the modern world: the space

research industry. FreeRTOS’s formal verification is

achieved employing the Feather Weight Visual Scenarios

(FVS) framework, which has been previously applied to

verify Internet of Things (IoT) protocols.

.

Keywords: Formal Specification, CubeSats, OBC.

1. Introduction

A new era for space-related systems has begun [1-
8,11]. According to a report by Morgan Stanley, the
expected revenue from the space industry will reach $22
billion by 2024 and $41 billion by 2029 [2, 9].

These high expectations in this domain originated a
competitive race in the space research field, both in the
academic and in the industrial world. In this attractive and
bubbly scenario the design and development of small
satellites has emerged as a golden star desired by everyone
given their low-costs involved in their production and
deployment. In the past ten years the nanosatellite segment
grow by a factor of 10x, from as few as 20 satellites in
2011 to nearly 200 in 2019, and it is estimated that 1800 to
2400 nano/microsatellites will need to be launched over
the next 5 years [3,4].

In particular, CubeSats, have turned out lately as one of
the most popular microsatellites [2]. The CubeSat program
was initiated at Stanford University in 1999 for the
purpose of building a low-cost and low-weight satellite.
Over a thousand different CubeSats missions have been
launched over the past 20 years [2,10].

There are a plethora of different domains where
CubeSats satellites are directly involved: communications,
earth remote sensing, space tethering, biology, astronomy,

space weather exploration and planetary science [2], just to
mention a few.

Because of its designs goals CubeSats are mainly
addressed for Low Earth Orbit missions [1-8,11]. This
present a huge challenge regarding the interaction between
the satellites and the Internet of Things (IoT) artifacts
receiving and handling data and information, taking into
account communications range and data rate. The
challenges include a global IoT coverage, ensuring
seamless communication with the IoT devices placed in
rural and even remote areas. As fully detailed in [24],
space-to-Earth communications are more challenging than
Earth-to-Earth ones, mainly because the channel losses
and the Doppler frequency shifts are higher and - possibly-
because of the ionospheric effects.

Additionally, CubeSats’ On BOARD Computers
(OBC) must be carefully designed, planned, developed
and verified. For example, battery consumption and other
resources are extremely important since the services the
satellites provide heavily rely on them. An OBC is in
charge of the all the satellites services, it monitors them to
ensure their health, and also monitors the status of all the
subsystems. An OBC also interacts with the ground station
to send the required telemetry data and satellite status
[24,25].

The design of OBC has been declared of national
relevance in Argentina and it has been included in the
topics of the Plan Nacional de Ciencia, Tecnología e
Innovación Argentina 2030.

One of the most important aspects to decide when
developing a OBC is the operating system to be installed
on it. Two of the most widely operating systems used are
FreeRTOS1 and KubOs2. As described on its website,
FreeRTOS, originally created as a real time operating
system for micro controllers, is distributed freely under the
MIT open source license, and includes a kernel and a
growing set of IoT libraries suitable for use across all
industry sectors. It has been used for satellites in many
projects [2,310,11]. Similarly, KubOS also provides
several interesting capabilities for controlling satellites,
including several open sources libraries.

1 https://www.freertos.org /
2 https://docs.kubos.com/1.21.0/index.html

 Universidad Tecnológica Nacional
 3 y 4 de noviembre de 2022

AJEA - Actas de Jornadas y Eventos Académicos de UTN
DOI: https://doi.org/10.33414/ajea.1146.2022

10 mo. Congreso Nacional de
Ingeniería Informática / Sistemas de Información

631
(1-2021)

Formal verification is a key phase in every software
development, but in those domains which are harder to test
and verify such as satellite systems it becomes even more
crucial. Furthermore, behavioral synthesis [12,13] is a
powerful technique that can be also applied to satellites
formal verification. When applying synthesis, the system
is built in a way such its behavior fulfills the specification
by construction. This is achieved by employing game
theory concepts: a game between the systems versus the
environment. A controller (of the system) is built for the
specified behavior if a winning strategy is found, an
strategy that leads the system to a winning state no matter
what move the environment choose. Usually, the
controller takes the form of an automaton that decides
which action to take considering the inputs gathered by the
system’s sensors.

In this work we focused on the formal verification of
the FreeRTOS operating system for OBC in CubeSats
satellites in a way to provide a better understanding of its
possibilities, potential and limitation as a potential
operating system for the space industry development. We
decided to analyze this operating system because of its
known use and also because its formalization has been
proposed as a case of study in the International Grand
Challenge on Verified Software [14,15].

As the specification formalism we employed a
powerful and expressive behavioral and synthesis
framework called Feather Weight Scenarios (FVS) [16-
18]. FVS is a graphical specification language based on
events, and features an expressive and simple notation. In
FVS behavior can be denoted by both linear and branching
properties, and is more expressive than classical temporal
logics such as Linear Temporal Logic (LTL) [16]. FVS
graphical scenarios can be translated into Büchi automata,
enabling the possibility of interacting with model checker
and synthesis tools like GOAL [19] or LTSA [20]. In [18]
we explored the FVS formalism to verify one of the most
relevant protocols for Iot: the MQQT3 protocol. As IoT
plays a key role for satellite communication, this previous
work constitutes a solid milestone.

The rest of this work is structured as follows. Section2
briefly presents the FVS framework. Section 3 details the
FreeRTOS formal specification and verification
employing FVS as the specification formalism. A
controller for the system is obtained, proving the
consistency of the specification. Sections 4 and 5 present
related and future work while Section 6 concludes the
paper by presenting some final observations.

2. FVS: Feather Weight Visual Scenarios.

In this section we will informally describe the standing
features of Branching FVS, a simple branching extension
of the FVS language [16,17]. The reader is referred
[16,17] for a formal characterization of the language. FVS

3 http://docs.oasis-open.org/mqtt/mqtt/v5.0/

is a graphical language based on scenarios. Scenarios are
partial order of events, consisting of points, which are
labeled with a logic formula expressing the possible events
occurring at that point, and arrows connecting them. An
arrow between two points indicates precedence of the
source with respect to the destination: for instance, in
Figure 1-a A-event precedes B-event.

We use an abbreviation for a frequent sub-pattern: a
certain point represents the next occurrence of an event
after another. The abbreviation is a second (open) arrow
near the destination point. For example, in Figure 1-b the
scenario captures the very next B-event following an A-
event, and not any other B-event. Conversely, to represent
the previous occurrence of a (source) event, there is a
symmetrical notation: an open arrow near the source
extreme. For example, in Figure 1-c the scenario captures
the immediate previous occurrence of a B-event from the
occurrence of the A-event, and not any other B-event.
Events labeling an arrow are interpreted as forbidden
events between both points. In Figure 1-d A-event
precedes B-event such that C-event does not occur
between them. FVS features aliasing between points.
Scenario in 1-e indicates that a point labeled with A is also
labeled with A ^ B. It is worth noticing that A-event is
repeated on the labeling of the second point just because of
FVS formal syntaxes [16].

Finally, two special points are introduced as delimiters
to denote the beginning and the end of an execution. These
are shown in Figure 1-f.

A B A B
Not (C)

(a) Precedence
(d) Forbidden

Behavior

A B

(b) Next

A B

(c) Previous

A A and B

(e) Aliasing (f) Delimiters

Beginning of execution

Ending of Execution

2.1 FVS rules

We now introduce the concept of FVS rules, a core
concept in the language. Roughly speaking, a rule is
divided into two parts: a scenario playing the role of an
antecedent and at least one scenario playing the role of a
consequent. The intuition is that if at least one time the
trace “matches" a given antecedent scenario, then it must
also match at least one of the consequents. In other words,
rules take the form of an implication: an antecedent
scenario and one or more consequent scenarios.

 Graphically, the antecedent is shown in black, and
consequents in grey. Since a rule can feature more than
one consequent, elements which do not belong to the
antecedent scenario are numbered to identify the
consequent they belong to.

 Universidad Tecnológica Nacional
 3 y 4 de noviembre de 2022

AJEA - Actas de Jornadas y Eventos Académicos de UTN
DOI: https://doi.org/10.33414/ajea.1146.2022

10 mo. Congreso Nacional de
Ingeniería Informática / Sistemas de Información

632
(1-2021)

Two examples are shown in Figure 2 modeling the
behavior of a client-server system. The rule in the top of
Figure 2 establishes that every request received by a server
must be answered, either accepting the request
(consequent 1) or denying it (consequent 2). The rule at
the bottom of Figure 2 dictates that every granted request
must be logged due to auditing requirements.

Request-Received

Request-Granted
1

Request-Denied
2

Request-Granted Request-Loggued
1

1

2.2 Synthesizing Behavior in FVS

FVS specifications can be used to automatically obtain
a controller employing a classical behavioral synthesis
procedure. As explained in [12,13] this technique aims to
find a winning strategy for our system. The opponent is
the environment in which our system is deployed.
Following the game metaphor, a winning strategy consists
of a sequence of actions that our system can always take,
no matter which “move” the environment make in every
turn. This guarantees that the behavioral properties will
always be satisfied. The winning strategy is displayed in
an automaton shape called the controller. The controller is
in charge of picking up the right action to take, following
the winning strategy, in order to take the system to an
accepting state. The formal specification is detailed in
[12,13].

We now briefly explain how a controller is found in
FVS while the complete description is available in [16,17].

Using the tableau algorithm detailed in [16,17] FVS
scenarios are translated into Büchi automata. Then, if the
obtained automata is deterministic, then we obtain a
controller using a technique [21] based on the specification
patterns [22] and the GR(1) subset of LTL. If the
automaton is non deterministic, we can obtain a controller
anyway. Employing an advanced tool for manipulating
diverse kinds of automata named GOAL [19] we translate
these automata into Deterministic Rabin automata. Since
synthesis algorithms are also incorporated into the GOAL
tool using Rabin automata as input, a controller can be
obtained.

Although this gain in expressiveness come with an cost
in terms of performance due to the size of the involved
automata we believe its crucial being able to express all
type of behavioral properties.

3. FreeRTOS Specification and Controller in

the FVS Framework

As explained in [1] FreeRTOS is a simple, easy-to-use
real-time operating system. Its source code is written in C
and assembly. It is open source and has little more than
2,200 lines of code. This operating system provides the
following main services: task management, inter-task
communication and synchronization, memory
management, real-time events, and control of input and
output devices.

Following the strategy adopted in [1] we specified
FreeRTOS behavior taking into account its main
functioning, the services it provides, and the invariants it
must preserve. After modeling the expected behavior of
the system we obtained a controller, thus proving the
correctness of the FVS specification. Section 3.1
describes the FVS specification for the FreeRTOS system
while Section 3.2 details how the controller for the system
is automatically obtained.

3.1 FVS Specification for the FreeRTOS Operating

System.

We first model FreeRTOS main requirements which
describe its basic functioning. The systems must begin
with a boot phase, which must be followed by a
scheduling phase. This latter phase cannot begin unless the
boot phase is finished. Once the scheduling phase is over,
tasks can be executed. No tasks can begin its execution
unless the scheduling phase is over. Four FVS rules are
shown in Figure 3 to address these requirements. The first
one says that the boot phase must be the first one to occur.
We employed the event anyOtherPhase as a syntactic
sugar simplification to avoid enumerating all the other
possible phases. The second rule establishes that the
scheduling phase must always follow the boot phase. The
third rule in Figure 3 specifies that if the scheduling phase
is active, then it must be the case that the system was
previously in the boot phase. Finally, the last rule says that
task can only be executed if and only of the
schedulingActive event occurred previously.

 Universidad Tecnológica Nacional
 3 y 4 de noviembre de 2022

AJEA - Actas de Jornadas y Eventos Académicos de UTN
DOI: https://doi.org/10.33414/ajea.1146.2022

10 mo. Congreso Nacional de
Ingeniería Informática / Sistemas de Información

633
(1-2021)

boot
11not (anyOtherPhase)

boot schedulingActive

1
1

not (anyOtherPhase)

boot
1

schedulingActive

1

not (anyOtherPhase)

schedulingActive
1

taskExecuted

1

not (anyOtherPhase)

Next we describe rules shaping the behavior for
FreeRTOS task management. The first requirement
impose that a task can only be in one of four states:
running, ready, suspended or blocked. It is addressed in
the FVS rule in Figure 4.

task

ready
1

running
2

suspended
3

blocked
4

The second requirement dictates how tasks are going to
be picked by the scheduler. This is achieved in a classic
priority scheme: the scheduler always chooses one task
with the highest priority among the ready tasks. This is
reflected in Figure 5.

schedulingActive taskChosen

taskChosen and HighestPriority
1

The third requirement for task management involves
the creation of an idle task. This task has the lowest
possible priority. This task guarantees that the processor is

always executing some task. The rule in Figure 6 deals
with the idle task as required.

schedulingActive idleTask

idleTask and LowestPriority
1

The final requirement included in this specification
regarding task management says that if there are two or
more tasks having the highest priority among the ready
tasks, then they shall equally share the processing time.
This is tackled in the rule shown in Figure 7. It says that if
two rules are executed sharing processing time then it
must be the case they were assigned with the same
priority.

schedulingActive

task1

task2

sameTimeExecution samePriority
11

We now define some rules for the communication and
synchronization aspects of the FreeRTOS operating
system. The first rule in this domain describes how
information travels through the operating system tasks:
employing queues. Tasks may post messages to queues
and read messages from queues. This rule is shown in
Figure 8.

task
1

postQueue
1

task
1

readQueue
1

 Universidad Tecnológica Nacional
 3 y 4 de noviembre de 2022

AJEA - Actas de Jornadas y Eventos Académicos de UTN
DOI: https://doi.org/10.33414/ajea.1146.2022

10 mo. Congreso Nacional de
Ingeniería Informática / Sistemas de Información

634
(1-2021)

The following two rules correspond to a classic queue
with limited capacity behavior: whenever a task wants to
read from an empty queue or wants to write to a full
queue, it is blocked. An attempt to post in a full queue is
shown in Figure 9 while an attempt to read from an empty
queue is shown in Figure 10.

task postQueue

fullQueue

taskBlocked
1

1

task readQueue

emptyQueue

taskBlocked
1

1

Finally, following the formalization of the system
detailed in [1] we provide some rules describing the most
two relevant invariants for the FreeRTOS operating
system. The first invariant says that a task can only be in
one state. The second one says that once the scheduler is
active there is always a task running, either a regular task
or the idle task. These two invariants are shown in Figure
11. As explained earlier, we employed a syntactic sugar
simplification with the anyOtherState to avoid
enumerating all the others possible state for each case.

task state

state and not (anyOtherState)

schedulingActive

taskRunning
1

idleTask
2

3.1 Obtaining a Controller

As explained in Section 2.2 a controller can be found
using an FVS specification as input. Since a controller was
found we can assert that there were no inconsistencies or
unreachable states in the specification. The obtained
automaton resulted in an automaton with 244 states and

467 transitions. A simplified version is shown of the
controller in Figure 12.

4. Related Work

Perhaps work in [1] is the closest approach to the
results presented in this paper. In [1] a formal specification
for the FreeRTOS operating system is also given,
describing the expected behavior of the system. The
underneath formalism combines a complex state machine-
based notation with a semi structured natural language
notation, which resembles instructions in procedural
languages. This formalism was difficult to learn, according
to the results reported in [1]. On the other hand, FVS is a
graphical and declarative notation, characteristics that ease
the specification process. Also, the work in [1] is
exclusively focused on the formal modeling of the
behavior while our approach includes interaction with
model checkers and behavioral synthesis, including
obtaining a controller.

Work in [23] presents a very interesting
implementation of the RTOS operating system for
embedded systems. We would certainly like to explore
FVS’s formal validation approach in this domain.

Other approaches analyzing formal verification over
OBC satellites are [5-8]. A interesting future line of
research is to compare FVS performance against all these
approaches. It is worth mentioning that none of these
approaches includes behavioral synthesis like our
proposal.

 Universidad Tecnológica Nacional
 3 y 4 de noviembre de 2022

AJEA - Actas de Jornadas y Eventos Académicos de UTN
DOI: https://doi.org/10.33414/ajea.1146.2022

10 mo. Congreso Nacional de
Ingeniería Informática / Sistemas de Información

635
(1-2021)

 5. Future work

Several lines of research may continue this work. In
first place, we would like to combine FVS’s controllers
with automatic code generators, in order to obtain not also
a model but also a possible implementation for the system.
This would constitute a major advance in our research.

We would also like to compare FVS performance
against other approaches [5-8]. This implies an empiric
evaluation over a consolidated case of study.

Finally, we are interested in extending formal
validation and verification to all the aspects involved in
the services offered by CubeSats, and not only the OBC’s
operating system. These services include features such as
communication, protocols and resources’ consumption
analysis.

6. Conclusions

The design of On Board Computers (OBC) for nano
satellites like CubeSats is a key activity for the space
research industry. The choice of the operating system of
the OBC determines how much information the satellite is
able to process and handle. Taking this into account we
present a formal verification for the FreeRTOS operating
system. FVS was able to specify all the expected behavior
of the system, and a controller was found. We believe the
graphical and declarative flavor of FVS may ease the
exploration and analysis of the different aspects to be
decided when designing a OBC.

References

[1] Déharbe, D., Galvao, S., & Moreira, A. M. (2009, August).
Formalizing freertos: First steps. In Brazilian Symposium on
Formal Methods (pp. 101-117). Springer, Berlin, Heidelberg.

[2] Saeed, N., Elzanaty, A., Almorad, H., Dahrouj, H., Al-
Naffouri, T. Y., & Alouini, M. S. (2020). Cubesat
communications: Recent advances and future challenges.
IEEE Communications Surveys & Tutorials, 22(3), 1839-
1862.

[3] Hanafi, A., Derouich, A., Karim, M., & Lemmassi, A. (2021,
January). Design and Implementation of an Open Source and
Low-Cost Nanosatellite Platform. In International
Conference on Digital Technologies and Applications (pp.
421-432). Springer, Cham.

[4] Williams, C. and DelPozzo S. Nano Microsatellite Market
Forecast - 10th Edition, Space-Works Annual
Nano/Microsatellite Market Assessment, 2020.

[5] Krishnan, R., & Lalithambika, V. R. (2020). Modeling and
Validating Launch Vehicle Onboard Software Using the
SPIN Model Checker. Journal of Aerospace Information
Systems, 17(12), 695-699.

[6] Aurandt, A., Jones, P. H., & Rozier, K. Y. (2022). Runtime
verification triggers real-time, autonomous fault recovery on

the CySat-I. In NASA Formal Methods Symposium (pp. 816-
825). Springer, Cham.

[7] Tipaldi, M., Legendre, C., Koopmann, O., Ferraguto, M.,
Wenker, R., & D'Angelo, G. (2018). Development strategies
for the satellite flight software on-board Meteosat Third
Generation. Acta Astronautica, 145, 482-491.

[8] Wenker, R., Legendre, C., Ferraguto, M., Tipaldi, M.,
Wortmann, A., Moellmann, C., & Rosskamp, D. (2017,
June). On-board software architecture in MTG satellite. In
2017 IEEE International Workshop on Metrology for
AeroSpace (MetroAeroSpace) (pp. 318-323). IEEE.

 [9] Pressman, A. (2019). Why Facebook, SpaceX and dozens of
others are battling over Internet access from space. Fortune.

[10] Kulu E.. “Nanosatellite and cubesat database,” 2019.
[Online]. Available: https://www.nanosats.eu/

[11] Alam, M., Khamees, A., Aboelnaga, T., Amer, A., Harbi,
A., Alamir, M., ... & Elsayed, O. A. (2021, August). Design
and Implementation of an Onboard Computer and payload
for Nano Satellite (CubeSat). In The International
Undergraduate Research Conference (Vol. 5, No. 5, pp. 361-
364). The Military Technical College.

[12] D'Ippolito, N. R., Braberman, V., Piterman, N., & Uchitel,
S. (2010, November). Synthesis of live behaviour models. In
Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering (pp. 77-
86).

[13] Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., & Sa ar,
Y. (2012). Synthesis of reactive (1) designs. Journal of
Computer and System Sciences, 78(3), 911-938.

[14] Jones, C., O'Hearn, P., & Woodcock, J. (2006). Verified
software: A grand challenge. Computer, 39(4), 93-95.

[15] Woodcock, J., & Banach, R. (2007). The verification grand
challenge. J. Univers. Comput. Sci., 13(5), 661-668.

[16] Asteasuain, F. , Braberman, V. (2017). Declaratively
building behavior by means of scenario clauses.
Requirements Engineering, 22(2), 239-274.

[17] Asteasuain, F, Calonge F, Dubinsky M, . Gamboa P. Open
and branching behavioral synthesis with scenario clauses.
CLEI ELECTRONIC JOURNAL, 24(3), 2021.

[18] Asteasuain F. (2021). “Controller Synthesis for IoT
Protocols Verification”. 9no. Congreso Nacional de
Ingeniería Informática y Sistemas de Información CoNaIISI
2021. Modalidad Virtual. Facultad Regional Mendoza.
Universidad Tecnológica Nacional. Mendoza, 4 y 5 de
Noviembre de 202

[19] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N.Wu, and W.-C.
Chan. Goal: A graphical tool for manipulating büchi
automata and temporal formulae. In TACAS, pages 466-471.
Springer, 2007

[20] Uchitel, S., Chatley, R., Kramer, J., & Magee, J. (2003,
April). LTSA-MSC: Tool support for behaviour model
elaboration using implied scenarios. In International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (pp. 597-601). Springer, Berlin,
Heidelberg.

[21] Maoz S. and Ringert J. O.. Synthesizing a lego forklift
controller in gr (1): A case study. arXiv preprint
arXiv:1602.01172, 2016.

 Universidad Tecnológica Nacional
 3 y 4 de noviembre de 2022

AJEA - Actas de Jornadas y Eventos Académicos de UTN
DOI: https://doi.org/10.33414/ajea.1146.2022

10 mo. Congreso Nacional de
Ingeniería Informática / Sistemas de Información

636
(1-2021)

[22] Dwyer, M. Avrunin, M, and Corbett M.. Patterns in property
specifications for finite-state verification. In ICSE, pages
411-420, 1999.

[23] Lamichhane, K., Kiran, M., Kannan, T., Sahay, D., Ranjith,
H. G., & Sandya, S. (2015, June). Embedded RTOS
implementation for Twin Nano-satellite STUDSAT-2. In
2015 IEEE Metrology for Aerospace (MetroAeroSpace) (pp.
541-546). IEEE.

[24] Fernandez, L., Ruiz-De-Azua, J. A., Calveras, A., & Camps,
A. (2020). Assessing LoRa for satellite-to-earth
communications considering the impact of ionospheric
scintillation. IEEE access, 8, 165570-165582.

[25] Woolley, M. (2019, January). Bluetooth core specification
v5. 1. In Bluetooth.

 Universidad Tecnológica Nacional
 3 y 4 de noviembre de 2022

AJEA - Actas de Jornadas y Eventos Académicos de UTN
DOI: https://doi.org/10.33414/ajea.1146.2022

10 mo. Congreso Nacional de
Ingeniería Informática / Sistemas de Información

637
(1-2021)

