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Abstract 

In this work we provide a formal verification of the 

FreeRTOS operating system. Even most, a controller for 

the system is found. FreeRTOS is one of the most used 

operating systems for On Board Computers (OBC) in nano 

satellites such as CubeSats. Exploring, verifying and 

understating the potential and limitations of OBC 

operating systems is crucial for the growth of one of the 

most promising domains in the modern world: the space 

research industry. FreeRTOS’s formal verification is 

achieved employing the Feather Weight Visual Scenarios 

(FVS) framework, which has been previously applied to 

verify Internet of Things (IoT) protocols.   

. 
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1. Introduction 

A new era for space-related systems has begun [1-
8,11]. According to a report by Morgan Stanley, the 
expected revenue from the space industry will reach $22 
billion by 2024 and $41 billion by 2029 [2, 9].  

These high expectations in this domain originated a 
competitive race in the space research field, both in the 
academic and in the industrial world. In this attractive and 
bubbly scenario the design and development of small 
satellites has emerged as a golden star desired by everyone 
given their low-costs involved in their production and 
deployment. In the past ten years the nanosatellite segment 
grow by a factor of 10x, from as few as 20 satellites in 
2011 to nearly 200 in 2019, and it is estimated that 1800 to 
2400 nano/microsatellites will need to be launched over 
the next 5 years [3,4]. 

In particular, CubeSats, have turned out lately as one of 
the most popular microsatellites [2]. The CubeSat program 
was initiated at Stanford University in 1999 for the 
purpose of building a low-cost and low-weight satellite.  
Over a thousand different CubeSats missions have been 
launched over the past 20 years [2,10].  

There are a plethora of different domains where 
CubeSats satellites are directly involved: communications, 
earth remote sensing, space tethering, biology, astronomy, 

space weather exploration and planetary science [2], just to 
mention a few. 

Because of its designs goals CubeSats are mainly 
addressed for Low Earth Orbit missions [1-8,11]. This 
present a huge challenge regarding the interaction between 
the satellites and the Internet of Things (IoT) artifacts 
receiving and handling data and information, taking into 
account communications range and data rate. The 
challenges include a global IoT coverage, ensuring 
seamless communication with the IoT devices placed in 
rural and even remote areas.  As fully detailed in [24], 
space-to-Earth communications are more challenging than 
Earth-to-Earth ones, mainly because the channel losses 
and the Doppler frequency shifts are higher and - possibly- 
because of the ionospheric effects. 

Additionally, CubeSats’ On BOARD Computers 
(OBC) must be carefully designed, planned, developed 
and verified. For example, battery consumption and other 
resources are extremely important since the services the 
satellites provide heavily rely on them. An OBC is in 
charge of the all the satellites services, it monitors them to 
ensure their health, and also monitors the status of all the 
subsystems. An OBC also interacts with the ground station 
to send the required telemetry data and satellite status 
[24,25].  

The design of OBC has been declared of national 
relevance in Argentina and it has been included in the 
topics of the Plan Nacional de Ciencia,  Tecnología e 
Innovación Argentina 2030.   

One of the most important aspects to decide when 
developing a OBC is the operating system to be installed 
on it. Two of the most widely operating systems used are 
FreeRTOS1 and KubOs2. As described on its website, 
FreeRTOS, originally created as a real time operating 
system for micro controllers, is distributed freely under the 
MIT open source license, and includes a kernel and a 
growing set of IoT libraries suitable for use across all 
industry sectors. It has been used for satellites in many 
projects [2,310,11]. Similarly, KubOS also provides 
several interesting capabilities for controlling satellites, 
including several open sources libraries.   

                                                           

1 https://www.freertos.org / 
2 https://docs.kubos.com/1.21.0/index.html  
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Formal verification is a key phase in every software 
development, but in those domains which are harder to test 
and verify such as satellite systems it becomes even more 
crucial. Furthermore, behavioral synthesis [12,13] is a 
powerful technique that can be also applied to satellites 
formal verification. When applying synthesis, the system 
is built in a way such its behavior fulfills the specification 
by construction.  This is achieved by employing game 
theory concepts: a game between the systems versus the 
environment.  A controller (of the system) is built for the 
specified behavior if a winning strategy is found, an 
strategy that leads the system to a winning state no matter 
what move the environment choose.  Usually, the 
controller takes the form of an automaton that decides 
which action to take considering the inputs gathered by the 
system’s sensors. 

In this work we focused on the formal verification of 
the FreeRTOS operating system for OBC in CubeSats 
satellites in a way to provide a better understanding of its 
possibilities, potential and limitation as a potential 
operating system for the space industry development. We 
decided to analyze this operating system because of its 
known use and also because its formalization has been 
proposed as a case of study in the International Grand 
Challenge on Verified Software [14,15].   

As the specification formalism we employed a 
powerful and expressive behavioral and synthesis 
framework called Feather Weight Scenarios (FVS) [16-
18]. FVS is a graphical specification language based on 
events, and features an expressive and simple notation. In 
FVS behavior can be denoted by both linear and branching 
properties, and is more expressive than classical temporal 
logics such as Linear Temporal Logic (LTL) [16]. FVS 
graphical scenarios can be translated into Büchi automata, 
enabling the possibility of interacting with model checker 
and synthesis tools like GOAL [19] or LTSA [20]. In [18] 
we explored the FVS formalism to verify one of the most 
relevant protocols for Iot: the MQQT3 protocol. As IoT 
plays a key role for satellite communication, this previous 
work constitutes a solid milestone.   

The rest of this work is structured as follows. Section2 
briefly presents the FVS framework. Section 3 details the 
FreeRTOS formal specification and verification 
employing FVS as the specification formalism. A 
controller for the system is obtained, proving the 
consistency of the specification. Sections 4 and 5 present 
related and future work while Section 6 concludes the 
paper by presenting some final observations.   

2. FVS: Feather Weight Visual Scenarios.  

In this section we will informally describe the standing 
features of Branching FVS, a simple branching extension 
of the FVS language [16,17]. The reader is referred 
[16,17] for a formal characterization of the language. FVS 

                                                           

3 http://docs.oasis-open.org/mqtt/mqtt/v5.0/  

is a graphical language based on scenarios. Scenarios are 
partial order of events, consisting of points, which are 
labeled with a logic formula expressing the possible events 
occurring at that point, and arrows connecting them. An 
arrow between two points indicates precedence of the 
source with respect to the destination: for instance, in 
Figure 1-a A-event precedes B-event.  

We use an abbreviation for a frequent sub-pattern: a 
certain point represents the next occurrence of an event 
after another. The abbreviation is a second (open) arrow 
near the destination point. For example, in Figure 1-b the 
scenario captures the very next B-event following an A-
event, and not any other B-event. Conversely, to represent 
the previous occurrence of a (source) event, there is a 
symmetrical notation: an open arrow near the source 
extreme. For example, in Figure 1-c the scenario captures 
the immediate previous occurrence of a B-event from the 
occurrence of the A-event, and not any other B-event. 
Events labeling an arrow are interpreted as forbidden 
events between both points. In Figure 1-d A-event 
precedes B-event such that C-event does not occur 
between them. FVS features aliasing between points. 
Scenario in 1-e indicates that a point labeled with A is also 
labeled with A ^ B. It is worth noticing that A-event is 
repeated on the labeling of the second point just because of 
FVS formal syntaxes [16].  

Finally, two special points are introduced as delimiters 
to denote the beginning and the end of an execution. These 
are shown in Figure 1-f.  

 

A B A B
Not (C)

(a) Precedence
(d) Forbidden 

Behavior

A B

(b) Next

A B

(c)  Previous

A A and B

(e) Aliasing (f) Delimiters

Beginning of execution

Ending of Execution

 

 

2.1 FVS rules 

We now introduce the concept of FVS rules, a core 
concept in the language. Roughly speaking, a rule is 
divided into two parts: a scenario playing the role of an 
antecedent and at least one scenario playing the role of a 
consequent. The intuition is that if at least one time the 
trace “matches" a given antecedent scenario, then it must 
also match at least one of the consequents. In other words, 
rules take the form of an implication: an antecedent 
scenario and one or more consequent scenarios. 

 Graphically, the antecedent is shown in black, and 
consequents in grey. Since a rule can feature more than 
one consequent, elements which do not belong to the 
antecedent scenario are numbered to identify the 
consequent they belong to.  
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Two examples are shown in Figure 2 modeling the 
behavior of a client-server system. The rule in the top of 
Figure 2 establishes that every request received by a server 
must be answered, either accepting the request 
(consequent 1) or denying it (consequent 2). The rule at 
the bottom of Figure 2 dictates that every granted request 
must be logged due to auditing requirements. 

 

Request-Received

Request-Granted
1

Request-Denied
2

Request-Granted Request-Loggued
1

1
 

 

2.2 Synthesizing Behavior in FVS 

FVS specifications can be used to automatically obtain 
a controller employing a classical behavioral synthesis 
procedure. As explained in [12,13] this technique aims to 
find a winning strategy for our system. The opponent is 
the environment in which our system is deployed. 
Following the game metaphor, a winning strategy consists 
of a sequence of actions that our system can always take, 
no matter which “move” the environment make in every 
turn. This guarantees that the behavioral properties will 
always be satisfied. The winning strategy is displayed in 
an automaton shape called the controller. The controller is 
in charge of picking up the right action to take, following 
the winning strategy, in order to take the system to an 
accepting state. The formal specification is detailed in 
[12,13]. 

We now briefly explain how a controller is found in 
FVS while the complete description is available in [16,17].  

Using the tableau algorithm detailed in [16,17] FVS 
scenarios are translated into Büchi automata. Then, if the 
obtained automata is deterministic, then we obtain a 
controller using a technique [21] based on the specification 
patterns [22] and the GR(1) subset of LTL. If the 
automaton is non deterministic, we can obtain a controller 
anyway. Employing an advanced tool for manipulating 
diverse kinds of automata named GOAL [19] we translate 
these automata into Deterministic Rabin automata. Since 
synthesis algorithms are also incorporated into the GOAL 
tool using Rabin automata as input, a controller can be 
obtained. 

Although this gain in expressiveness come with an cost 
in terms of performance due to the size of the involved 
automata we believe its crucial being able to express all 
type of behavioral properties.  

3. FreeRTOS Specification and Controller in 

the FVS Framework 

As explained in [1] FreeRTOS is a simple, easy-to-use 
real-time operating system. Its source code is written in C 
and assembly. It is open source and has little more than 
2,200 lines of code. This operating system provides the 
following main services: task management, inter-task 
communication and synchronization, memory 
management, real-time events, and control of input and 
output devices. 

Following the strategy adopted in [1] we specified 
FreeRTOS behavior taking into account its main 
functioning, the services it provides, and the invariants it 
must preserve. After modeling the expected behavior of 
the system we obtained a controller, thus proving the 
correctness of the FVS specification.  Section 3.1 
describes the FVS specification for the FreeRTOS system 
while Section 3.2 details how the controller for the system 
is automatically obtained.  

 

3.1 FVS Specification for the FreeRTOS Operating 

System. 

We first model FreeRTOS main requirements which 
describe its basic functioning. The systems must begin 
with a boot phase, which must be followed by a 
scheduling phase. This latter phase cannot begin unless the 
boot phase is finished.   Once the scheduling phase is over, 
tasks can be executed. No tasks can begin its execution 
unless the scheduling phase is over.  Four FVS rules are 
shown in Figure 3 to address these requirements. The first 
one says that the boot phase must be the first one to occur. 
We employed the event anyOtherPhase as a syntactic 
sugar simplification to avoid enumerating all the other 
possible phases. The second rule establishes that the 
scheduling phase must always follow the boot phase. The 
third rule in Figure 3 specifies that if the scheduling phase 
is active, then it must be the case that the system was 
previously in the boot phase. Finally, the last rule says that 
task can only be executed if and only of the 
schedulingActive event occurred previously.   
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boot
11not (anyOtherPhase)

boot schedulingActive

1
1

not (anyOtherPhase)

boot
1

schedulingActive

1

not (anyOtherPhase)

schedulingActive
1

taskExecuted

1

not (anyOtherPhase)

 

Next we describe rules shaping the behavior for 
FreeRTOS task management. The first requirement 
impose that a task can only be in one of four states: 
running, ready, suspended or blocked. It is addressed in 
the FVS rule in Figure 4. 

task

ready
1

running
2

suspended
3

blocked
4

 

The second requirement dictates how tasks are going to 
be picked by the scheduler. This is achieved in a classic 
priority scheme: the scheduler always chooses one task 
with the highest priority among the ready tasks. This is 
reflected in Figure 5. 

 

schedulingActive taskChosen

taskChosen and HighestPriority
1

 

 

The third requirement for task management involves 
the creation of an idle task. This task has the lowest 
possible priority. This task guarantees that the processor is 

always executing some task. The rule in Figure 6 deals 
with the idle task as required.  

 

schedulingActive idleTask

idleTask and LowestPriority
1

 

 

The final requirement included in this specification 
regarding task management says that if there are two or 
more tasks having the highest priority among the ready 
tasks, then they shall equally share the processing time. 
This is tackled in the rule shown in Figure 7. It says that if 
two rules are executed sharing processing time then it 
must be the case they were assigned with the same 
priority.  

 

schedulingActive

task1

task2

sameTimeExecution samePriority
11

 

 

We now define some rules for the communication and 
synchronization aspects of the FreeRTOS operating 
system. The first rule in this domain describes how 
information travels through the operating system tasks: 
employing queues. Tasks may post messages to queues 
and read messages from queues. This rule is shown in 
Figure 8. 

 

task
1

postQueue
1

task
1

readQueue
1
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The following two rules correspond to a classic queue 
with limited capacity behavior:  whenever a task wants to 
read from an empty queue or wants to write to a full 
queue, it is blocked. An attempt to post in a full queue is 
shown in Figure 9 while an attempt to read from an empty 
queue is shown in Figure 10. 

task postQueue

fullQueue

taskBlocked
1

1

 

task readQueue

emptyQueue

taskBlocked
1

1

 

Finally, following the formalization of the system 
detailed in [1] we provide some rules describing the most 
two relevant invariants for the FreeRTOS operating 
system. The first invariant says that a task can only be in 
one state. The second one says that once the scheduler is 
active there is always a task running, either a regular task 
or the idle task. These two invariants are shown in Figure 
11. As explained earlier, we employed a syntactic sugar 
simplification with the anyOtherState to avoid 
enumerating all the others possible state for each case.  

task state

state and not (anyOtherState)

schedulingActive

taskRunning
1

idleTask
2

 

 

3.1 Obtaining a Controller 

As explained in Section 2.2 a controller can be found 
using an FVS specification as input. Since a controller was 
found we can assert that there were no inconsistencies or 
unreachable states in the specification. The obtained 
automaton resulted in an automaton with 244 states and 

467 transitions. A simplified version is shown of the 
controller in Figure 12.   

 

 

4. Related Work 

Perhaps work in [1] is the closest approach to the 
results presented in this paper. In [1] a formal specification 
for the FreeRTOS operating system is also given, 
describing the expected behavior of the system. The 
underneath formalism combines a complex state machine-
based notation with a semi structured natural language 
notation, which resembles instructions in procedural 
languages. This formalism was difficult to learn, according 
to the results reported in [1].  On the other hand, FVS is a 
graphical and declarative notation, characteristics that ease 
the specification process. Also, the work in [1] is 
exclusively focused on the formal modeling of the 
behavior while our approach includes interaction with 
model checkers and behavioral synthesis, including 
obtaining a controller.  

Work in [23] presents a very interesting 
implementation of the RTOS operating system for 
embedded systems. We would certainly like to explore 
FVS’s formal validation approach in this domain. 

Other approaches analyzing formal verification over 
OBC satellites are [5-8]. A interesting future line of 
research is to compare FVS performance against all these 
approaches. It is worth mentioning that none of these 
approaches includes behavioral synthesis like our 
proposal. 
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 5. Future work 

Several lines of research may continue this work. In 
first place, we would like to combine FVS’s controllers 
with automatic code generators, in order to obtain not also 
a model but also a possible implementation for the system. 
This would constitute a major advance in our research.   

We would also like to compare FVS performance 
against other approaches [5-8]. This implies an empiric 
evaluation over a consolidated case of study.  

Finally, we are interested in extending formal 
validation and verification to all the aspects involved in 
the services offered by CubeSats, and not only the OBC’s 
operating system. These services include features such as 
communication, protocols and resources’ consumption 
analysis.   

6. Conclusions 

The design of On Board Computers (OBC) for nano 
satellites like CubeSats is a key activity for the space 
research industry. The choice of the operating system of 
the OBC determines how much information the satellite is 
able to process and handle.  Taking this into account we 
present a formal verification for the FreeRTOS operating 
system. FVS was able to specify all the expected behavior 
of the system, and a controller was found. We believe the 
graphical and declarative flavor of FVS may ease the 
exploration and analysis of the different aspects to be 
decided when designing a OBC.  
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