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Abstract. The Software Engineering community has identified behav-
ioral specification as one of the main challenges to be addressed for the
transference of formal verification techniques such as model checking.
In particular, expressivity of the specification language is a key factor,
especially when dealing with open systems and controllability of events.
In this work we present an extension of the FVS language to denote be-
havior in open systems. By relying on an existing behavioral synthesis
technique based on the specification patterns we show how FVS specifi-
cation can be used as input to automatically build a controller from its
specification.
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1 Introduction

Early specification of behavior has been pinpointed by the community as one of
the main problems to be addressed to consolidate the transference of software
formal validation and verification techniques as model checking [5] from the aca-
demic to the industrial world [11,10]. On the other side, the increasing demand
of Open Systems [7, 10, 12] calls for the creation of tools that assists the software
engineer in the complex task of specifying and describing the expected behavior
of the system. There is an natural challenge involved when dealing with Open
Systems since actions beyond the control of the system must be considered, in
contrast to systems known as closed where all the events to occur are handled
entirely by the system. Open Systems interact with an environment which gener-
ates events ( non controllable by the system) which may impact in its behavior,
which constitutes an affect known as Controllability.

Controllability has been addressed methodologically and algorithmically from
the synthesis behavior of controllers. Synthesis behavior can be seen as an au-
tomated procedure to obtain a correct-by-construction reactive system from its
temporal logic specification [12]. In the case of reactive synthesis, an implementa-
tion is typically given as an automaton that accepts input from the environment
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(e.g., from sensors) and produces the system’s output (e.g., on actuators). By
construction the input and output assignments of every infinite run of the au-
tomaton satisfy the specification it was synthesized from [12]. In order to reduce
the time complexity of the algorithms involved work in [4] suggested the General
Reactivity of Rank 1 (GR(1)) fragment of LTL, which has an efficient polynomial
time symbolic synthesis algorithm. GR(1) is a strict assume/guarantee subset
of LTL, comprised of constraints for initial states, safety propositions over the
current and successor state and assertions about what should hold infinitely of-
ten also known as justice constraints. A GR(1) synthesis problem is defined as a
game between a system player and an environment player [4]. Efficient symbolic
algorithms for GR(1) realizability checking and controller synthesis have been
presented in [4].

However, these approaches have some limitations regarding the specification
language used. Most of them are based on temporal logics such as LTL (Linear
Temporal Logic) and some extensions as fluents [9]. The expressivity of these
notations has been challenged by the community [9,2, 14, 6, 15] so there is a need
to develop more expressive specification languages.

Given this context in this work we explore the FVS (Feather Weight Vi-
sual Scenarios) [2, 1] specification language in the context of Open Systems and
behavior synthesis. FVS is a declarative language based on graphical scenarios
and features a flexible and expressive notation with clear and solid language
semantics. FVS expressivity is a distinguished characteristic among declarative
approaches since it is able to denote w-regular properties, being for example,
more expressive than LTL (Linear Temporal Logic) [2]. In [1] all the specifica-
tion patterns [8] were modeled in FVS, and their specification was compared
against other notations. The results showed that FVS specification turn out to
be more succinct and easier to manipulate and validate. Furthermore, a tool
named GTxFVS was developed giving support to all FVS’s features [3].

The first step of FVS into the world of Open Systems and Behavior Synthesis
is based on a technique introduced in [12], which is guided by the usage of spec-
ification patterns [8]. The mentioned paper presents an automated, sound and
complete translation of most of the the specification patterns [8] to the GR(1)
form. Although at this point this open flavour of FVS works only for systems
whose behavior can be described using exclusively the specification patterns, the
kind of properties covered by these patterns is useful enough to denote most of
the common behavior [8]. What is more, the technique described in [12] does
not include three specification patterns which are addressed in this work.

Summing up, the contributions of this work can be stated as:

— We introduce a simple extension of FVS to consider Open Systems.

— We rely on an existing technique based on the specification patterns so that
FVS specifications can be used to synthesise behavior and automatically
build a controller from its specification.

— Our approach is shown in action by modeling an attractive case of study.

— We present a version of our tool GTxFVS including these new features.

— We incorporate three specifications patterns that were left out in the original
technique.
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The rest of the paper is structured as follows. Section 2 briefly introduces
FVS. Section 3 describes FVS in the context of Open Systems and behavior
synthesis while section 4 shows our approach in action by modeling a case of
study. Section 5 details how we incorporate the three missing patterns. Finally,
section 6 introduces some threats to validity and also discuss future and related
work whereas section 7 presents the conclusions of this work.

2 Background

In this section we will informally describe the standing features of FVS [2]. The
reader is referred to [2] for a formal characterization of the language. FVS is a
graphical language based on scenarios. Scenarios are partial order of events, con-
sisting of points, which are labeled with a logic formula expressing the possible
events occurring at that point, and arrows connecting them. An arrow between
two points indicates precedence of the source with respect to the destination: for
instance, in Figure 1-a A-event precedes B-event. We use an abbreviation for a
frequent sub-pattern: a certain point represents the next occurrence of an event
after another. The abbreviation is a second (open) arrow near the destination
point. For example, in Figure 1-b the scenario captures the very next B-event
following an A-event, and not any other B-event. Conversely, to represent the
previous occurrence of a (source) event, there is a symmetrical notation: an open
arrow near the source extreme. For example, in Figure 1-c the scenario captures
the immediate previous occurrence of a B-event from the occurrence of the A-
event, and not any other B-event. Events labeling an arrow are interpreted as
forbidden events between both points. In Figure 1-d A-event precedes B-event
such that C-event does not occur between them. FVS features aliasing between
points. Scenario in 1-e indicates that a point labeled with A is also labeled with
A and B. It is worth noticing that A-event is repeated on the labeling of the
second point just because of FVS formal syntaxes [2] . Finally, two special points
are introduced as delimiters to denote the beginning and the end of an execution.
These are shown in Figure 1-f.

A B A B A 5 Not (C)
o—r 0 o—> 0 o—<~——>»0 *eo——»0
(a) Precedence (b) Next (c) Previous (d) Forbidden Behavior
4 Aand B . Beginning of execution
® ®
\\\——_/// @ Ending of Execufion
(€) Aliasing () Delimiters

Fig. 1. FVS Basic Features

604



XXIV Congreso Argentino de Ciencias de la Computacion Tandil - 8 al 12 de octubre de 2018

We now introduce the concept of FVS rules, a core concept in the language.
Roughly speaking, a rule is divided into two parts: a scenario playing the role
of an antecedent and at least one scenario playing the role of a consequent. The
intuition is that whenever a trace matches” a given antecedent scenario, then
it must also match at least one of the consequents. In other words, rules take
the form of an implication: an antecedent scenario and one or more consequent
scenarios. Graphically, the antecedent is shown in black, and consequents in
grey. Since a rule can feature more than one consequent, elements which do not
belong to the antecedent scenario are numbered to identify the consequent they
belong to. Two examples are shown in Figure 2 modeling the behavior of a client-
server system. The rule in left margin of Figure 2 establishes that every request
received by a server must be answered, either accepting the request (consequent
1) or denying it (consequent 2). The rule at the right margin of Figure 2 dictates
that every granted request must be logged due to auditing requirements.

Reguest-Granted
1

Reguest-Received

® 1 Reguest-Granted Request-Loggued
1

L
1

Reguest-Denied
)

2

Fig. 2. FVS Rules examples

3 Open FVS and Behavior Synthesis

We now briefly introduce a simple extension to the FVS language to handle
open systems. This is achieved by introducing a new type of events, which are
considered as environment events not controlled by the system. Semantics of FVS
(see [2]) is based on the notion of morphisms between scenarios. In particular
morphisms between scenarios allow to determine whether a system trace satisfies
a rule and semantics of the language is defined by the set of traces that fulfills
all the specified rules. We first define the concept of scenarios considering non
controllable events. The set of events is divided into controllable events and non
controllable events. An FVS scenario including non controllable events in their
alphabet is described by the following definition

Definition 31 (FVS Scenario) An FVS scenario is a tuple (X, P,{,=,#,<
,7), where:

S1: X is a finite set of propositional variables standing for types of events such
that X = Y. |J Zue where X. represents controllable events and X,. non con-
trollable events
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S82: P is a finite set of points;

83: 0 : P — PL(X) is a function that labels each point with a given formula;
S4: = C P x P is an equivalence relation;

S5: 2 C P x P is an asymmetric relation among points;

S§6: <C (PW{0} x PW{oo})\ {(0,00)} is a precedence relation between points,
where 0 and oo represent the beginning and the end of execution, respectively;
S7: v : (£ U <) — PL(XY) assigns to each pair of points, related by precedence
or separation, a formula which constrains the set of events occurrences that may
occur between the pair.

We now formally define morphisms between scenarios. Intuitively, we would
like to obtain a matching between scenarios ,i.e., a mapping between their
points exhibiting how a scenario “specializes” another one.Given that non con-
trollable events values are considered as inputs to the system the usual morphism
definition specified in [2] can be applied.

Definition 32 (Morphism) Given two scenarios S1, S2 (assuming a common
universe of event propositions), and [ a total function between Py and Py we say
that f is a morphism from Sy to Sy (denoted f : S; — Sa) iff

M1: ly(a) = C1(p) is a tautology for all p € Py and all a € Py such that
a =3 f(p)7

M2: v2(f(p), f(q)) = 71(p,q) is a tautology for all p,q € Pi;

M3: if p=1 q then f(p) =2 f(q) for all p,q € P1;

My: if p #1 q then f(p) #2 f(q) for all p,q € Pi;

MS5: if p <1 q then f(p) <2 f(q) for all p,q € P;.

3.1 FVS specifications as input to a synthesis scheme

Work in [2] describes a tableau algorithm which translates FVS scenarios into
Biichi automata. Also related to FVS, work in [1] shows how FVS is expressive
enough to denote all the specification patterns introduced by [8]. On the other
hand, work in [12] proposes a synthesis scheme for a set of LTL (linear temporal
logic) formulas, the set of formulas describing the behavior of all the specification
patterns. These formulas were translated into General Reactivity of Rank 1
(GR(1)) fragment of LTL (due to performance and complexity reasons) and
then synthesised following an usual game based strategy.

Given this context, we translated all the FVS scenarios describing all the
specification patterns. The resulting Biichi automata were then used to feed the
synthesis scheme described earlier. In this way, a controller can be automatically
built synthesizing the behavior of a system using as input FVS specifications.
Although this open flavour of FVS works only for system whose behavior can be
described using only the specification patterns, the kind of properties covered
by these patterns is an attractive portion of the cake [8]. It is worth mentioning
that this version of FVS is fully available in the current status of GTxFVS[3],
the software tool which implements all the features of the language.
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4 Case of Study

In this section we analyze the case of study introduced in [12], the “Lego Forklift”
example. The behavior of the model is given in section 4.1 while the synthesis
procedure is detailed in section 4.2.

4.1 The “Lego Forklift” example

The behavior of the system is described in [12]. In few words, the forklift has
three sensors: one sensor to determine whether it is at a station and two distance
sensors to detect obstacles and cargo. It also has three motors, to turn the left
and right wheels and to lift the fork. Values read by the sensors are provided as
inputs to component ForkliftController and its outputs are commands controlling
the motors. The properties modeling the behavior of the system is described
using assumptions and guarantees based on the scheme introduced in [12]. In
particular, three guarantees and two assumptions properties are specified. The
first guarantee property is a simple safety one: if the forklift detects an obstacle,
both motors are stopped. The second one is a liveness property: cargo will always
eventually be delivered. Finally, the third guarantee property establishes that the
forklift has to leave its pick-up station between lifting and dropping cargo. Rules
in figure 3 denote the behavior of these three properties.

Close-Obstacle Close-Obstacle and LefiMotorStopped and RightMotorStopped
1

S

) Lift Drop
1 1 [ ] »

Not (At-Station)
1

Fig. 3. Guarantees properties for the Lift Controller

The rule in the upper part of figure 3 says that every time the Close-Obstacle
event occurs, then motors left and right should be stopped (denoted by the
occurrence of the events LeftMotorStopped and RightMottorStopped). Note that
these events are modeled as occurring simultaneously as it is indicated in the
systems requirements specified in [12]. The second rule (in the left margin of
the lower part of figure 3) simply states that Lift event will always eventually
occurs, a classical liveness property. Finally, the rule in the right margin of the
lower part of figure 3 demands the forklift to leave the station (modeled as the
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negation of the At-Station event) between the occurrence of the Lift event (the
forklift lifted an item) and the occurrence of the Drop Event (the forklift dropped
an item).

The forklift specification is completed with two assumptions on the envi-
ronment. One assumption is that going forward with both motors will lead to
reaching a station unless the motors are not going forward anymore. As it is
noted in [12] in order to satisfy this assumption an adversary environment can
prevent the forklift from reaching a cargo station by presenting obstacles forcing
the forklift to stop. Hence, an additional assumption for a well-behaved environ-
ment is added: in the given setting it is reasonable to expect that between two
stations, the forklift may be blocked by obstacles at most twice.

Rules in figure 4 model these two assumptions. The rule in the top of the
figure tackles the first assumption: once left and right motors are on, then the
forklift will reach an station if MotorStopped event do not occur. The second rule
focuses on the two times blocked maximum restriction. The rule contains four
possible consequents once the forklift has left the station and the first obstacle
occurs. Consequent 1 deals with the situation that no other obstacle is detected
until the forklift arrives at the station. Consequent 2 do consider the occurrence
of a second obstacle, but no other obstacle must occur until the station is reached.
Consequents three and four follows a similar analysis but considering that the
system may be stopped for some reason before reaching an station. This is why
the End point of traces is included. So, before reaching a new station or the
system is stopped the forklift may be blocked by obstacles at most twice.

Not (LeftMottorStopped or RightMotorStopped)

LefiMotorOn and Right MotorOn At-Station
1
[

1

A Ar-Station
'hS“l \ 1
.wf.»"
ot €
Ar-Station
29
Not (At-Station) Close-Obstacle Close-Obstacle
Noft (At-Station) _ Not (At-Station) 2 2 1e)
L J >e . I[:'C(r,f.-)bswE
Not (Clos
3 Close-Obstacle
’,-b 3 Neot (At-Station or C, lose-Obstacle) 3
7
'é"’s.
)
[=)
(/(:

Fig. 4. Environment assumptions properties for the Lift Controller
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4.2 Synthesising behavior from FVS scenarios

By relying on the technique introduced in [12] as detailed in section 3.1 we
build a controller for the ForkLift case study taking as input FVS scenarios. In
particular, three properties of the Forklift example matches with three specifica-
tion pattern: the third guarantee property corresponds to the Existence pattern
with Between ) and R scope, the first assumption with the Response event with
Global scope and and second assumption is an instance of the Bounded Existence
pattern with After Q until R scope.

5 The three missing patterns

Work in [12] proposes a synthesis scheme based on the GR(1) fragment of LTL
(Linear Temporal Logic) for most of the specification patterns and scopes in-
troduced by [8]. However, three patterns are not currently supported by their
technique. These patterns are the followings ones: Precedence pattern with After
Q scope, Response Chain pattern (with one stimuli and two responses) with Af-
ter q until v scope and the Constrained Chain pattern (responses s, t without z
responds to the p stimuli event) with After q until r scope. These patterns are not
included since no Deterministic Biichi automata exists to describe their behavior
and the mentioned technique requires this kind of automaton as input.

We propose an alternative approach to circumvent this issue. The FVS sce-
narios for these patterns (the FVS scenarios for all the specification patterns are
shown in [1]) can be later translated into non determinist Biichi automata. By
employing an advanced tool for manipulating diverse kinds of automata named
GOAL [16] we translated these automata into Deterministic Rabin automata.
Since synthesis algorithms are also incorporated into the GOAL tool using Ra-
bin automata as input, we could incorporate these patterns so as to cover all the
specification patterns. Furthermore, since our tool GTxFVS [3] can interact with
the GOAL tool, all the patterns and their synthesized behavior are available for
the software engineer.

Being able to handle all the specification patterns including these three pat-
terns is important in terms of completeness and expressiveness but it also has
its drawbacks. Most of the algorithms involved in automata manipulation and
synthesis depend on the size of the automata and have performance and com-
plexity issues. In addition, the synthesis procedure proposed in [12] introduces
extra variables and therefore the the costs are higher.

The problem is exacerbated with these patterns using Deterministic Rabin
automata since their size is really important. For example, the Rabin automaton
for the Response Chain pattern (with one stimuli and two responses) with After
q until r scope consists of 94 states and 1003 transitions. These automata can
be simplified, but their size remains important. The simplified automaton for
the latter pattern consists of 63 states and 611 transitions. Table 1 describes
the automata size for these three patterns. The abbreviations s and ¢ stands for
states and transitions respectively.
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Table 1. Automata size Complexity for the missing patterns

Pattern Not Det. Buchi| Det. Rabin |Simplified Rabbin
Precedence after 5s and 13t 11s and 41t 11s and 41t
Response Chain after until 9s and 37t |94s and 1003s| 63s and 611t
Constrained Chain after until| 8s and 34t |47s and 611t 35t and 411t

Using the proposed technique to incorporate these patterns (using Rabin
automata and the GOAL tool) we add an extra assumption for the ForkLift
example and obtained a new controller that includes this new behavior: after
leaving an station, all the Drop events must be preceded in time with an Lift
event. This behavior is an instance of the Precedence pattern with After @ scope.
This gain in expressiveness come with an cost in terms of performance due to the
size of the involved automata. The time consumed to obtain this new controller
took eight times more than the previous one. As it is mentioned in [8, 12] these
patterns are far from being the most used ones. However, we believe it is desirable
being able to express them despite the fact they are time consuming.

6 Some Threats to Validity, Future and Related Work

In this section we briefly discuss some issues that can be seen as threats to
validity to the results introduced in this work.

First of all, performance and complexity of the algorithms used must be
addressed. One way to optimize this problem is trying to reduce the overhead
introduced in the pipe of tools used to obtain a controller using the mentioned
synthesis scheme, which we aim to cover in future work. A second issue is related
to FVS as an open system language specification. Synthesis scheme is built
upon the work introduced in [12], which only covers properties included in the
specification patterns. In this sense, to obtain a complete synthesis scheme for
properties beyond the patterns is clearly an appealing challenge regarding future
work. Despite these facts, we believe that the obtained results are promising
enough to consider FVS as an attractive alternative to describe behavior in
Open Systems.

Regarding related work several approaches can be mentioned. To begin with,
there exist several specifications graphical languages based on events like FVS.
For example, TimeEdit [15] or Graphical Interval Logic (GIL) [6]. However, these
languages are not focused on modeling behavior in Open Systems.

Work in [9] uses the concept of fluent to relate occurrence of events and
predicate about systems behavior. A fluent represents an ongoing behavior, with
a set of starting and ending events. We believe there is a possible contribution
combining fluents and FVS scenarios for specifying behavior in Open Systems.
Finally, GR(1) synthesis has been used and extended in different contexts and for
different application domains [13, 7]. However, we consider that FVS expressivity
can be a distinguishable feature among these and other similar approaches.
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7 Conclusions

In this work we present an open system flavour of FVS. By relying on a synthesis
technique proposed by [12] we showed how FVS specification can be used as input
to automatically build a controller from its specification. This work constitutes
an early first step for FVS in the open systems specifications since our approach
currently applies for those properties denoted by the specification patterns. As it
was mentioned in Section 6 we would like to augment the kind of properties that
can be expressed in future work. We also incorporated in our approach three
specification patterns that were not included in [12]. This gain in expressibility
come with a cost in terms of complexity and computing time. In this sense, we
believe expressivity is a key factor when denoting behavior in early stages.
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