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Abstract 

In this work we explore FVS as an Architectural 

Description Language (ADL) with the possibility to 

perform formal verification of architectural behavior. We 

modeled and specified a collection of architectural 

patterns including typical ones such as publish/subscribe 

or blackboard as well as some more modern ones in 

emergent technologies such as embedded software or 

cloud computing. Using a model checker tool we were 

able to formally verify architectural patterns in a concrete 

case of study:  a server’s room monitoring system.  The 

results show the potential of our work in the ADL’s 

domain. 

Keywords: Software Architecture, Architectural 

patterns, Formal Verification.    

1. Introduction 

The consolidation of Software Architectures [1-2] can 

be considered one of the most relevant milestones in the 

Software Engineering community in the past twenty five 

years. In essence, a software architecture view consists of 

a high-level representation of the behavior of the system to 

be developed, exhibiting the most relevant interactions 

between all the elements of interest. In general, this 

behavior is depicted using artifacts so called Components 

which communicates with each other by employing 

Connectors. Connectors define the protocol which 

establishes the communication rules between two or more 

components [3].    

Typical software architecture requirements’ transcend 

functional behavior including concepts as availability, 

performance, security or usability, just to mention a few of 

them. For example, it is far from being useful an ATM 

distributed system where transactions are performed 

correctly (i.e., functional requirements’ are satisfied) but 

each transactions take 5 seconds to be approved, failing to 

satisfy performance issues. In this sense, software 

engineering tools and techniques must be provided in 

order to reason, explore, model, specify and verify 

architecture behavior [4,5,6,7,8]. 

The introduction and usage of architecture patterns [8-

13] certainly leverage the potential of architectural 

elements. In the same way that the widely known object 

design patterns [14] architecture pattern consists of a 

template expressing a recurrent solution to common 

problems and therefore providing a common vocabulary 

and ontology to communicate and denote architectural 

behavior. Known architecture patterns are for example 

Client/Server, Broadcast, Pipe and Filter, Layered 

Systems, and others. In few words, an architecture pattern 

details the components involved, how they interact, and 

restrictions about the expected behavior of their 

combination.  

Architectural behavior has been generally addressed by 

domain specific languages known as ADLs (Arquitecture 

Description Languages) [11,15,16,17,18]. Although the 

meaningful advances achieved by these and many other 

approaches there are still appealing issues that need to be 

solved and addressed [6-8]. The dynamic and intrinsic 

nature of architectural behavioral is certainly one of the 

challenges involved. It is not unusual that relevant 

architectural behavior only arise while executing the 

system, for example a server connection that only take 

place under certain conditions that can be determined 

exclusively in runtime. Another important factor is 

granularity. Several code-level relevant events might be 

needed to build one architectural event. For example, 

multiple settings and validations may be required to open a 

socket where a server listens to its requests. Finally, 

modern systems such as those based on micro services 

[10], embedded systems [12] or and BIG DATA systems 

based on Cloud Computing [9] push software 

architecture’s limits to its boundaries creating new and 

emerging architectures such as Cloud Computing [19] or 

intensive and dense distributed systems [20-21]. Under 

these conditions it can be stated that more powerful and 

expressive ADLs are still required to address these crucial 

problems. One possible way to achieve this goal is to 

focus on architectural patterns, since there is a powerful 

synergy between architectural patterns and ADLs [8,22]. 

Given this context in this work we explore FVS 

(Feather Weight Visual Scenarios) [23] as an ADL to 

model, specify and verify architectural patterns. FVS is a 

very simple yet powerful specification language based on 

graphical scenarios originally conceived to model the 



expected behavior of reactive systems. Given its flexibility 

is has been explored in the past as a language to denote the 

behavior of architectural connectors [24]. We now build 

on the top of that work expanding FVS architectural 

behavior coverage including the specification and 

validation of architectural patterns, including modern ones 

such as embedded systems patterns, micro services pattern 

or cloud computing patterns. To validate our proposal we 

provide in this work the specification of some 

representative patterns such as Blackboard, 

publish/subscribe, microservices oriented patterns, and 

some distributed patterns. We formally verify their 

behavior employing an architectural relevant case of study 

using FVS specifications as input into a model checker 

[25]. We believe the obtained results consolidate FVS as a 

powerful and expressive ADL’s. 

The rest of the paper is structured as follows. Section 2 

briefly presents the main features of the FVS specification 

language. Section 3 presents the specification of some 

architectural patterns whereas Section 4 presents their 

validation on a case of study. Section 5 discusses some 

related and future work while Section 6 highlights the 

conclusions of this paper.  

2. Feather Weight Visual Scenarios  

In this section we will informally describe the standing 

features of FVS [23]. The reader is referred to [23] for a 

formal characterization of the language. FVS is a graphical 

language based on scenarios. Scenarios are partial order of 

events, consisting of points, which are labeled with a logic 

formula expressing the possible events occurring at that 

point, and arrows connecting them. An arrow between two 

points indicates precedence of the source with respect to 

the destination: for instance, in Figure 1-a A-event 

precedes B-event. We use an abbreviation for a frequent 

sub-pattern: a certain point represents the next occurrence 

of an event after another. The abbreviation is a second 

(open) arrow near the destination point. For example, in 

Figure 1-b the scenario captures the very next B-event 

following an A-event, and not any other B-event. 

Conversely, to represent the previous occurrence of a 

(source) event, there is a symmetrical notation: an open 

arrow near the source extreme. For example, in Figure 1-c 

the scenario captures the immediate previous occurrence 

of a B-event from the occurrence of the A-event, and not 

any other B-event. Events labeling an arrow are interpreted 

as forbidden events between both points. In Figure 1-d A-

event precedes B-event such that C-event does not occur 

between them. FVS features aliasing between points. 

Scenario in 1-e indicates that a point labeled with A is also 

labeled with A ^ B. It is worth noticing that A-event is 

repeated on the labeling of the second point just because of 

FVS formal syntaxes [23]. Finally, two special points are 

introduced as delimiters to denote the beginning and the 

end of an execution. These are shown in Figure 1-f. 

 

 

Figure 1. Basic Elements in FVS 

 We now introduce the concept of FVS rules, a core 

concept in the language. Roughly speaking, a rule is 

divided into two parts: a scenario playing the role of an 

antecedent and at least one scenario playing the role of a 

consequent. The intuition is that whenever a trace 

“matches" a given antecedent scenario, then it must also 

match at least one of the consequents. In other words, rules 

take the form of an implication: an antecedent scenario and 

one or more consequent scenarios. Graphically, the 

antecedent is shown in black, and consequents in grey. 

Since a rule can feature more than one consequent, 

elements which do not belong to the antecedent scenario 

are numbered to identify the consequent they belong to. 

Two examples are shown in Figure 2 modeling the 

behavior of a client-server system. The rule in the top of 

Figure 2 establishes that every request received by a server 

must be answered, either accepting the request 

(consequent 1) or denying it (consequent 2). The rule at 

the bottom of Figure 2 dictates that every granted request 

must be logged due to auditing requirements.   

 

 

 

Figure 2. FVS rules’ examples 

3. Architectural Patterns in FVS 

In this section we will show the specification of some 

representative architectural patterns, namely the 

blackboard pattern and the publish/subscribe pattern, three 

architectural patterns for embedded software and a 

gateway pattern for microservices and cloud-oriented 

arquitectures. These patterns will be addressed in the next 

subsections. The specification of these patterns is taken 

from several approaches in the literature in different 

shapes and flavors, from formal specification given as 

temporal logics formulas to specifications indicated in 

natural language   [8-10,12]. This might reflect the 
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flexibility of our approach since it can be adapted to 

manifold circumstances. Finally, Section 3.5 presents 

some reflections about the given description and 

verification of the behavior of architectural patterns in 

FVS. 

3.1 Publish/Subscribe Pattern 

In this pattern three type of components are involved: 

components who publish information or events (depending 

on the context of the system), components that receive 

those pieces of information and a intermediate component 

playing the role of a intelligent buffer that receive the 

information and send it to those components who claimed 

interest in that information. That is, in order to receive the 

information components must first explicitly show interest 

in receiving it by subscribing to the intermediate buffer.  

In this way, components that produce the data are 

decoupled from the components that consume the data. 

Three main rules shaping the behavior of this pattern 

according to the specification given in [8] are the 

following: 

• R1: The Publish/Subscribe instantiation must be 

unique, acting like a Singleton [14]. 

• R2: Whenever a component sends a data to the 

intermediate buffer, the information must be 

received. That is, everything components produce 

it is eventually published.  

• R3: Every time a component who has subscribed 

to receive some type of information and a 

component publish one of that type, then the 

interested component eventually receive that 

information.  In other words, subscribes receive 

their data.  

The FVS rules shown in Figure 3 capture these 

Publish/Subscribe requirements. In the rule in the top of 

Figure 3 the BB-On event stands for the activation  of the 

Blackboard, which must be unique during all the 

computation according to R1. The rule in the middle says 

that every component C that publish a certain data Ci it is 

received in the intermediate buffer. Finally, the last rule 

addresses requirement R3: if a component Cn is subscribed 

to data from a component Ci and information Ci is 

received, then component Cn receives the information. 

 

 

 

Figure 3. Publish/Subscribe rules in FVS 

3.2 Blackboard Pattern 

As in the previous case we follow the specification for 

this pattern from [8]. This pattern is usually used for the 

task of collaborative problem solving, i.e., a set of 

components work together to solve an overall, complex 

problem that usually do not have a feasible or known 

solution [8]. Three type of components are present in this 

pattern: the blackboard itself, who plays the role of a 

publish/subscribe, the knowledge components that solve 

the different parts of the main problem and a control 

component, who centralizes and orchestrates the 

interaction between all the components. The specification 

detailed in [8] includes the following requirements 

describing the behavior of this pattern: 

• R1: All the requirements given in Section 3.1 for 

the publish/subscribe pattern since the blackboard 

component behaves as a publish/subscribe. 

• R2: The Knowledge components solve all the 

tasks they receive.  

• R3: Every task published by a Control component 

is eventually assigned.   

• R4: Every solution published by a Knowledge 

component is eventually received by the Control 

Component.  

Figure 4 shows the FVS rules modeling requirements 

R2 (in the top of the Figure), R3 (the rule in the middle of 

the figure) and R4 (the rule in the bottom of the Figure). 

Note that requirements R1 denoting the behavior of a 

Publish/Subscribe are shown in Figure 3.  

 

 

Figure 4. Rules for the Blackboard Pattern 

3.3 Hardware Abstraction Layer 

This pattern belongs to the Distribution category for 

embedded software architectural patterns identified in 

[12]. The application context of this pattern is the 

following: An embedded control system controls hardware 

devices (e.g. sensors and actuators) and the problem is 

how the engineer can control different kinds of hardware 

within application, without needing to know the details of 

the hardware devices. The solution provided by the pattern 

is the introduction of a hardware abstraction layer interface 

containing functions to control all the hardware devices. 

The requirement shaping the behavior of this pattern 

(see Figure 5) is very simple: every hardware request must 

be handled by the interface.  
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Figure 5. An FVS rule for the HW Abstraction Pattern 

 

3.4 Fixed Process Allocation and Scheduling 

Hardware Abstraction Layer 

This pattern belongs to the Real Time category for 

embedded software architectural patterns identified in 

[12]. Its application context is the following: An 

embedded control system requiring several processes. The 

scheduling is not pre-emptive because there are no 

priorities between the processes. However, some tasks 

may need more frequent repetition and some tasks may 

need more processing time. The pattern allows creating 

processes with predictable time behavior to address the 

problem following the next conditions: 

1. All the resources needed by a process must be 

granted before it is started, and no 

initialization time must be given.  

2. Each process is divided into executable codes 

and for each one their worst-case scenario is 

calculated.  

3. Once a process is started there are no other 

external interruption allowed until it finishes. 

The FVS rules in Figure 6 capture the conditions 

needed to this particular pattern for embedded systems. 

The rule in the top of Figure 6 simply states that if a 

process is started, then it had obtained its resources and no 

initialization had occurred. The rules in the middle of 

Figure 6 illustrate the behavior imposed by the second 

condition. Finally, the rule in the top of Figure 6 tackles 

the third condition. 

 

 

Figure 6. Rules for Fixed Scheduling Pattern 

3.5 Virtual TimeStamps Pattern 

This pattern belongs to the Fault Tolerance category 

for embedded software architectural patterns identified in 

[12]. Its application context is the following: How to know 

the order of events in a distributed embedded system?. The 

pattern provides a solution by adding a TimeStamp 

component synchronized by a clock to tag all the events of 

interest. Rules in Figure 7 introduce the behavior of this 

pattern. The rule in the top of the Figure simply adds a 

timestamp to every event whereas the rule at the bottom 

synchronizes the timestamp component with the clock of 

the system. 

 

 

 

Figure 7. Rules for TimeStamps Pattern 

 

3.6 The API and Cloud-Computing Gateway 

Pattern 

The API-Gateway pattern belongs to the microservices 

domain and it is fully specified in [10]. As it is explained 

in [10] the pattern is the entry point of the system that 

routes the requests to the appropriate microservices, also 

invoking multiple microservices and aggregating results. It 

can also be responsible for different tasks such as 

authentication. Following the specification in [10] we 

include the following requirements: 

• R1: Every request received by any of the 

microservices of the system must be 

communicated only by the gateway. 

• R2: Every aggregated result transmission must be 

done through the gateway.   

• R3: The gateway must implement the 

authentication feature. 

Rules in Figure 8 introduce the behavior of this pattern. 

The rule in the top of the Figure 8 claims that every 

client’s request to a micro service must be delivered 

exclusively by employing the gateway channel 

(Requirement R1). The second rule focuses on 

requirement R2: if a result is aggregated then the API-

Gateway event occurred in the past (i.e., communication 

took place only by the Gateway). Finally, the rule at the 

bottom of Figure 8 addresses requirement R3: a micro 

service will receive a task only if an Authenticated event 

occurred previously (that is, the Gateway performed the 

authentication controls.) 
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Figure 8. API-Gateway Pattern Behavior 

It is worth noticing that these requirements are general 

enough to match another pattern from the cloud computing 

domain: the Cloud component gateway pattern [9]. By just 

replacing microservices events for the events of interest in 

the cloud architecture system this pattern constitute a 

possible specification of the cloud component gateway 

pattern. 

3.6 Some observations 

FVS was able to fully specify pattern behavior in 

different kind of domains, from traditional architectural 

patterns such as blackboard or publish/subscribe to more 

modern ones such as gateways for cloud computing and 

microservices architectures as well as architectural 

patterns for embedded software. This may exhibit the 

flexibility and expressive power of our approach. 

Nonetheless, a more comprehensive comparison against 

other approaches is needed to further validate this 

observation.   

4. Case Study: A System for Monitoring a 

Servers’ Room in a University. 

In this section we will verify the behavior of some of 

the previously mentioned patterns in a concrete case of 

study. Since FVS rules can be translated into Büchi 

automata [23] they can be used to feed any model checker 

to verify if the current model of system satisfies their 

behavior. We employed the LTSA [25] model checker, but 

any other could have been used as well. 

The case of study consists of a system monitoring the 

servers’ room which belongs to the Software Engineering 

career at the Universidad Nacional de Avellaneda.  

Temperature and humidity values from the room are read 

by sensors (three for temperature and three for humidity), 

and a central system receives this information. In concrete, 

the server room contains two servers and six sensors 

monitor them: sensors BMP280 and DS18B20 to measure 

temperature and three sensors DHT22 for humidity. A 

Wemos board is in charge of reading the values from the 

sensors whereas the system features a ThingSpeak 

platform. Communication along the system is regulated by 

the MQTT (Message Queuing Telemetry Transport) 

protocol [30]. 

In further versions of the system more sensors are 

expected to be aggregated and also an internal system to 

regulate the temperature of the room taking into account 

the received information.  

We employed two of the architectural patterns from 

Section 3 in the monitoring system: the Hardware 

Abstraction Layer pattern (Section 3.3) and the 

publish/subscribe pattern (Section 3.1).  The first pattern 

was used to shape the communication with the sensors 

while the second one to distribute the information. Figure 

9 shows the architecture of the serve’s room monitoring 

example.  

 

 

 

Figure 9. Servers’ Monitoring System’s Architecture 

 

We build a model of the system and verified the rules 

modeling both patterns in the LTSA [25] model checker. 

Regarding performance, LTSA took eight seconds to 

verify the architectural patterns. After running the model 

checker we found out that the publish/subscribe pattern 

behavior was satisfied by the model. However, we found 

an important bug regarding the Hardware Abstraction 

Layer pattern, since there was a direct connection from the 

system to the humidity sensors. This was solved by 

removing that connection and introducer a proper 

communication through the gateway. 

  

5. Related and Future Work 

We share some objectives and goals with different 

approaches.  Charmy [7] is an appealing framework for 

architecture’s validation and verification. Behavior is 

denoted using another graphical language called Property 

Sequence Chart (PSC) [15]. PSC is inspired in UML 2.0 

Interaction Sequence diagrams. Contrary to FVS which is 

exclusively a graphical language, some restrictions in the 

behavior must be accompanied by natural language. 

Another distinction is that properties in PSC are described 

as “negative” or “oppsosite” behavior whereas in FVS 

behavior is described by using rules. 
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In [8] a technique to verify some architectural patterns 

is presented. Specification of software connectors, 

components, ports and interactions can be thoroughly 

described by employing a domain specific language. 

Verification is achieved by introducing a formal and 

automatic translation to a theorem prover tool. All the 

specifications follow an operational approach while our 

technique is based on a declarative perspective.  

In [9-10] some modern patterns for embedded and 

cloud computing patterns are introduced. This kind of 

work presenting modern challenges for software 

architectural patterns is clearly an inspiration for others 

following this line of research. However, in most cases 

patterns are not formally described. Besides the 

specification of the pattern, our approach also offers the 

possibility to formally verify them by employing a model 

checker tool [25]. 

Some other approaches presents novel ADL’s to shape 

the behavior of software architectural patterns [19,26-27]. 

We believe the graphical nature of FVS, the flexibility and 

expressive power of its notations plus the possibility of 

introducing verification tasks and synthesis of behavior 

makes FVS a distinguishable approach.  

    Regarding future work we would like to undertake 

an empiric study to compare the flexibility and expressive 

power of FVS against other ADL’s. We would also like to 

compare performance issues against other approaches 

verifying architectural specifications like [7-8]. Finally, we 

also would like to combine FVS with other frameworks, 

including static architectural analyzers like [28] as well as 

dynamic analyzers such as [29].   

6. Conclusions 

In this work we propose FVS as an architectural 

description language to denote, explore and verify 

architectural behavior. To validate our proposal we 

explore the topic of architectural patterns which subsume 

typical solutions including the interaction of complex 

components and connectors. In our experimentation we 

include widely known patterns such as publish/subscribe 

or blackboard as well other modern patterns in new 

domains such as embedded software and distributed and 

cloud computing architectures aiming to cope with new 

challenges. All of these patterns were modeled and 

specified in FVS, showing the flexibility and expressive 

power of our notation. In addition, we were able to 

formally verify some pattern in a concrete case of study 

employing a model checker tool.   
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