

Declarative Specification and Verification of Modern Software Architecture

Patterns

Fernando Asteasuain
1,2

, Martín Miguel Machuca
1
.

1
Universidad Nacional de Avellaneda {fasteasuain,mmmachuca}@undav.edu.ar

2
Universidad Abierta Interamericana – Centro de Altos Estudio CAETI

Abstract

In this work we explore FVS as an Architectural

Description Language (ADL) with the possibility to

perform formal verification of architectural behavior. We

modeled and specified a collection of architectural

patterns including typical ones such as publish/subscribe

or blackboard as well as some more modern ones in

emergent technologies such as embedded software or

cloud computing. Using a model checker tool we were

able to formally verify architectural patterns in a concrete

case of study: a server’s room monitoring system. The

results show the potential of our work in the ADL’s

domain.

Keywords: Software Architecture, Architectural

patterns, Formal Verification.

1. Introduction

The consolidation of Software Architectures [1-2] can

be considered one of the most relevant milestones in the

Software Engineering community in the past twenty five

years. In essence, a software architecture view consists of

a high-level representation of the behavior of the system to

be developed, exhibiting the most relevant interactions

between all the elements of interest. In general, this

behavior is depicted using artifacts so called Components

which communicates with each other by employing

Connectors. Connectors define the protocol which

establishes the communication rules between two or more

components [3].

Typical software architecture requirements’ transcend

functional behavior including concepts as availability,

performance, security or usability, just to mention a few of

them. For example, it is far from being useful an ATM

distributed system where transactions are performed

correctly (i.e., functional requirements’ are satisfied) but

each transactions take 5 seconds to be approved, failing to

satisfy performance issues. In this sense, software

engineering tools and techniques must be provided in

order to reason, explore, model, specify and verify

architecture behavior [4,5,6,7,8].

The introduction and usage of architecture patterns [8-

13] certainly leverage the potential of architectural

elements. In the same way that the widely known object

design patterns [14] architecture pattern consists of a

template expressing a recurrent solution to common

problems and therefore providing a common vocabulary

and ontology to communicate and denote architectural

behavior. Known architecture patterns are for example

Client/Server, Broadcast, Pipe and Filter, Layered

Systems, and others. In few words, an architecture pattern

details the components involved, how they interact, and

restrictions about the expected behavior of their

combination.

Architectural behavior has been generally addressed by

domain specific languages known as ADLs (Arquitecture

Description Languages) [11,15,16,17,18]. Although the

meaningful advances achieved by these and many other

approaches there are still appealing issues that need to be

solved and addressed [6-8]. The dynamic and intrinsic

nature of architectural behavioral is certainly one of the

challenges involved. It is not unusual that relevant

architectural behavior only arise while executing the

system, for example a server connection that only take

place under certain conditions that can be determined

exclusively in runtime. Another important factor is

granularity. Several code-level relevant events might be

needed to build one architectural event. For example,

multiple settings and validations may be required to open a

socket where a server listens to its requests. Finally,

modern systems such as those based on micro services

[10], embedded systems [12] or and BIG DATA systems

based on Cloud Computing [9] push software

architecture’s limits to its boundaries creating new and

emerging architectures such as Cloud Computing [19] or

intensive and dense distributed systems [20-21]. Under

these conditions it can be stated that more powerful and

expressive ADLs are still required to address these crucial

problems. One possible way to achieve this goal is to

focus on architectural patterns, since there is a powerful

synergy between architectural patterns and ADLs [8,22].

Given this context in this work we explore FVS

(Feather Weight Visual Scenarios) [23] as an ADL to

model, specify and verify architectural patterns. FVS is a

very simple yet powerful specification language based on

graphical scenarios originally conceived to model the

expected behavior of reactive systems. Given its flexibility

is has been explored in the past as a language to denote the

behavior of architectural connectors [24]. We now build

on the top of that work expanding FVS architectural

behavior coverage including the specification and

validation of architectural patterns, including modern ones

such as embedded systems patterns, micro services pattern

or cloud computing patterns. To validate our proposal we

provide in this work the specification of some

representative patterns such as Blackboard,

publish/subscribe, microservices oriented patterns, and

some distributed patterns. We formally verify their

behavior employing an architectural relevant case of study

using FVS specifications as input into a model checker

[25]. We believe the obtained results consolidate FVS as a

powerful and expressive ADL’s.

The rest of the paper is structured as follows. Section 2

briefly presents the main features of the FVS specification

language. Section 3 presents the specification of some

architectural patterns whereas Section 4 presents their

validation on a case of study. Section 5 discusses some

related and future work while Section 6 highlights the

conclusions of this paper.

2. Feather Weight Visual Scenarios

In this section we will informally describe the standing

features of FVS [23]. The reader is referred to [23] for a

formal characterization of the language. FVS is a graphical

language based on scenarios. Scenarios are partial order of

events, consisting of points, which are labeled with a logic

formula expressing the possible events occurring at that

point, and arrows connecting them. An arrow between two

points indicates precedence of the source with respect to

the destination: for instance, in Figure 1-a A-event

precedes B-event. We use an abbreviation for a frequent

sub-pattern: a certain point represents the next occurrence

of an event after another. The abbreviation is a second

(open) arrow near the destination point. For example, in

Figure 1-b the scenario captures the very next B-event

following an A-event, and not any other B-event.

Conversely, to represent the previous occurrence of a

(source) event, there is a symmetrical notation: an open

arrow near the source extreme. For example, in Figure 1-c

the scenario captures the immediate previous occurrence

of a B-event from the occurrence of the A-event, and not

any other B-event. Events labeling an arrow are interpreted

as forbidden events between both points. In Figure 1-d A-

event precedes B-event such that C-event does not occur

between them. FVS features aliasing between points.

Scenario in 1-e indicates that a point labeled with A is also

labeled with A ^ B. It is worth noticing that A-event is

repeated on the labeling of the second point just because of

FVS formal syntaxes [23]. Finally, two special points are

introduced as delimiters to denote the beginning and the

end of an execution. These are shown in Figure 1-f.

Figure 1. Basic Elements in FVS

 We now introduce the concept of FVS rules, a core

concept in the language. Roughly speaking, a rule is

divided into two parts: a scenario playing the role of an

antecedent and at least one scenario playing the role of a

consequent. The intuition is that whenever a trace

“matches" a given antecedent scenario, then it must also

match at least one of the consequents. In other words, rules

take the form of an implication: an antecedent scenario and

one or more consequent scenarios. Graphically, the

antecedent is shown in black, and consequents in grey.

Since a rule can feature more than one consequent,

elements which do not belong to the antecedent scenario

are numbered to identify the consequent they belong to.

Two examples are shown in Figure 2 modeling the

behavior of a client-server system. The rule in the top of

Figure 2 establishes that every request received by a server

must be answered, either accepting the request

(consequent 1) or denying it (consequent 2). The rule at

the bottom of Figure 2 dictates that every granted request

must be logged due to auditing requirements.

Figure 2. FVS rules’ examples

3. Architectural Patterns in FVS

In this section we will show the specification of some

representative architectural patterns, namely the

blackboard pattern and the publish/subscribe pattern, three

architectural patterns for embedded software and a

gateway pattern for microservices and cloud-oriented

arquitectures. These patterns will be addressed in the next

subsections. The specification of these patterns is taken

from several approaches in the literature in different

shapes and flavors, from formal specification given as

temporal logics formulas to specifications indicated in

natural language [8-10,12]. This might reflect the

A B A B
Not (C)

(a) Precedence (d) Forbidden Behavior

A B

(b) Next

A B

(c) Previous

A A and B

(e) Aliasing (f) Delimiters

Beginning of execution

Ending of Execution

Request-Received

Request-Granted
1

Request-Denied
2

Request-Granted Request-Loggued
1

1

flexibility of our approach since it can be adapted to

manifold circumstances. Finally, Section 3.5 presents

some reflections about the given description and

verification of the behavior of architectural patterns in

FVS.

3.1 Publish/Subscribe Pattern

In this pattern three type of components are involved:

components who publish information or events (depending

on the context of the system), components that receive

those pieces of information and a intermediate component

playing the role of a intelligent buffer that receive the

information and send it to those components who claimed

interest in that information. That is, in order to receive the

information components must first explicitly show interest

in receiving it by subscribing to the intermediate buffer.

In this way, components that produce the data are

decoupled from the components that consume the data.

Three main rules shaping the behavior of this pattern

according to the specification given in [8] are the

following:

• R1: The Publish/Subscribe instantiation must be

unique, acting like a Singleton [14].

• R2: Whenever a component sends a data to the

intermediate buffer, the information must be

received. That is, everything components produce

it is eventually published.

• R3: Every time a component who has subscribed

to receive some type of information and a

component publish one of that type, then the

interested component eventually receive that

information. In other words, subscribes receive

their data.

The FVS rules shown in Figure 3 capture these

Publish/Subscribe requirements. In the rule in the top of

Figure 3 the BB-On event stands for the activation of the

Blackboard, which must be unique during all the

computation according to R1. The rule in the middle says

that every component C that publish a certain data Ci it is

received in the intermediate buffer. Finally, the last rule

addresses requirement R3: if a component Cn is subscribed

to data from a component Ci and information Ci is

received, then component Cn receives the information.

Figure 3. Publish/Subscribe rules in FVS

3.2 Blackboard Pattern

As in the previous case we follow the specification for

this pattern from [8]. This pattern is usually used for the

task of collaborative problem solving, i.e., a set of

components work together to solve an overall, complex

problem that usually do not have a feasible or known

solution [8]. Three type of components are present in this

pattern: the blackboard itself, who plays the role of a

publish/subscribe, the knowledge components that solve

the different parts of the main problem and a control

component, who centralizes and orchestrates the

interaction between all the components. The specification

detailed in [8] includes the following requirements

describing the behavior of this pattern:

• R1: All the requirements given in Section 3.1 for

the publish/subscribe pattern since the blackboard

component behaves as a publish/subscribe.

• R2: The Knowledge components solve all the

tasks they receive.

• R3: Every task published by a Control component

is eventually assigned.

• R4: Every solution published by a Knowledge

component is eventually received by the Control

Component.

Figure 4 shows the FVS rules modeling requirements

R2 (in the top of the Figure), R3 (the rule in the middle of

the figure) and R4 (the rule in the bottom of the Figure).

Note that requirements R1 denoting the behavior of a

Publish/Subscribe are shown in Figure 3.

Figure 4. Rules for the Blackboard Pattern

3.3 Hardware Abstraction Layer

This pattern belongs to the Distribution category for

embedded software architectural patterns identified in

[12]. The application context of this pattern is the

following: An embedded control system controls hardware

devices (e.g. sensors and actuators) and the problem is

how the engineer can control different kinds of hardware

within application, without needing to know the details of

the hardware devices. The solution provided by the pattern

is the introduction of a hardware abstraction layer interface

containing functions to control all the hardware devices.

The requirement shaping the behavior of this pattern

(see Figure 5) is very simple: every hardware request must

be handled by the interface.

BB-On

Ci-Publish Data-Ci-Received
1

1

Cn-Subscribed-Ci Data-Ci-Received

1

Cn-Received-Ci
1

Control-C-Publish-Task Task-Assigned
1

1

Know-C Task-Assigned

1

Task-Solved
1

Know-C-Publish-Solution Control-C-Receive-Solution
1

1

Figure 5. An FVS rule for the HW Abstraction Pattern

3.4 Fixed Process Allocation and Scheduling

Hardware Abstraction Layer

This pattern belongs to the Real Time category for

embedded software architectural patterns identified in

[12]. Its application context is the following: An

embedded control system requiring several processes. The

scheduling is not pre-emptive because there are no

priorities between the processes. However, some tasks

may need more frequent repetition and some tasks may

need more processing time. The pattern allows creating

processes with predictable time behavior to address the

problem following the next conditions:

1. All the resources needed by a process must be

granted before it is started, and no

initialization time must be given.

2. Each process is divided into executable codes

and for each one their worst-case scenario is

calculated.

3. Once a process is started there are no other

external interruption allowed until it finishes.

The FVS rules in Figure 6 capture the conditions

needed to this particular pattern for embedded systems.

The rule in the top of Figure 6 simply states that if a

process is started, then it had obtained its resources and no

initialization had occurred. The rules in the middle of

Figure 6 illustrate the behavior imposed by the second

condition. Finally, the rule in the top of Figure 6 tackles

the third condition.

Figure 6. Rules for Fixed Scheduling Pattern

3.5 Virtual TimeStamps Pattern

This pattern belongs to the Fault Tolerance category

for embedded software architectural patterns identified in

[12]. Its application context is the following: How to know

the order of events in a distributed embedded system?. The

pattern provides a solution by adding a TimeStamp

component synchronized by a clock to tag all the events of

interest. Rules in Figure 7 introduce the behavior of this

pattern. The rule in the top of the Figure simply adds a

timestamp to every event whereas the rule at the bottom

synchronizes the timestamp component with the clock of

the system.

Figure 7. Rules for TimeStamps Pattern

3.6 The API and Cloud-Computing Gateway

Pattern

The API-Gateway pattern belongs to the microservices

domain and it is fully specified in [10]. As it is explained

in [10] the pattern is the entry point of the system that

routes the requests to the appropriate microservices, also

invoking multiple microservices and aggregating results. It

can also be responsible for different tasks such as

authentication. Following the specification in [10] we

include the following requirements:

• R1: Every request received by any of the

microservices of the system must be

communicated only by the gateway.

• R2: Every aggregated result transmission must be

done through the gateway.

• R3: The gateway must implement the

authentication feature.

Rules in Figure 8 introduce the behavior of this pattern.

The rule in the top of the Figure 8 claims that every

client’s request to a micro service must be delivered

exclusively by employing the gateway channel

(Requirement R1). The second rule focuses on

requirement R2: if a result is aggregated then the API-

Gateway event occurred in the past (i.e., communication

took place only by the Gateway). Finally, the rule at the

bottom of Figure 8 addresses requirement R3: a micro

service will receive a task only if an Authenticated event

occurred previously (that is, the Gateway performed the

authentication controls.)

HW-Request

HW-Layer
1

HW-Processed

Process-Started Process-Finished

1

Not (External-Interruption)

Resources-Granted
1

1

Not Init-Time
Process-Started

Exec-Codes
1

1

Process-Started Exec-Codes

1

Worst-Case-Calculated
1

Event Event and TimeStamp
1

Clock-Tick Clock-Tick and TimeStamp-Updated
1

Figure 8. API-Gateway Pattern Behavior

It is worth noticing that these requirements are general

enough to match another pattern from the cloud computing

domain: the Cloud component gateway pattern [9]. By just

replacing microservices events for the events of interest in

the cloud architecture system this pattern constitute a

possible specification of the cloud component gateway

pattern.

3.6 Some observations

FVS was able to fully specify pattern behavior in

different kind of domains, from traditional architectural

patterns such as blackboard or publish/subscribe to more

modern ones such as gateways for cloud computing and

microservices architectures as well as architectural

patterns for embedded software. This may exhibit the

flexibility and expressive power of our approach.

Nonetheless, a more comprehensive comparison against

other approaches is needed to further validate this

observation.

4. Case Study: A System for Monitoring a

Servers’ Room in a University.

In this section we will verify the behavior of some of

the previously mentioned patterns in a concrete case of

study. Since FVS rules can be translated into Büchi

automata [23] they can be used to feed any model checker

to verify if the current model of system satisfies their

behavior. We employed the LTSA [25] model checker, but

any other could have been used as well.

The case of study consists of a system monitoring the

servers’ room which belongs to the Software Engineering

career at the Universidad Nacional de Avellaneda.

Temperature and humidity values from the room are read

by sensors (three for temperature and three for humidity),

and a central system receives this information. In concrete,

the server room contains two servers and six sensors

monitor them: sensors BMP280 and DS18B20 to measure

temperature and three sensors DHT22 for humidity. A

Wemos board is in charge of reading the values from the

sensors whereas the system features a ThingSpeak

platform. Communication along the system is regulated by

the MQTT (Message Queuing Telemetry Transport)

protocol [30].

In further versions of the system more sensors are

expected to be aggregated and also an internal system to

regulate the temperature of the room taking into account

the received information.

We employed two of the architectural patterns from

Section 3 in the monitoring system: the Hardware

Abstraction Layer pattern (Section 3.3) and the

publish/subscribe pattern (Section 3.1). The first pattern

was used to shape the communication with the sensors

while the second one to distribute the information. Figure

9 shows the architecture of the serve’s room monitoring

example.

Figure 9. Servers’ Monitoring System’s Architecture

We build a model of the system and verified the rules

modeling both patterns in the LTSA [25] model checker.

Regarding performance, LTSA took eight seconds to

verify the architectural patterns. After running the model

checker we found out that the publish/subscribe pattern

behavior was satisfied by the model. However, we found

an important bug regarding the Hardware Abstraction

Layer pattern, since there was a direct connection from the

system to the humidity sensors. This was solved by

removing that connection and introducer a proper

communication through the gateway.

5. Related and Future Work

We share some objectives and goals with different

approaches. Charmy [7] is an appealing framework for

architecture’s validation and verification. Behavior is

denoted using another graphical language called Property

Sequence Chart (PSC) [15]. PSC is inspired in UML 2.0

Interaction Sequence diagrams. Contrary to FVS which is

exclusively a graphical language, some restrictions in the

behavior must be accompanied by natural language.

Another distinction is that properties in PSC are described

as “negative” or “oppsosite” behavior whereas in FVS

behavior is described by using rules.

Client-Request MicroService-Receive-Task

API-Gateway
1

1

Agreggated-Result

API-Gateway
1

Authenticated
1

1

MicroService-Receive-Task

�����������	

����

�����������	

����

�����������	

����

��������	

����

��������	

����

��������	

����

����	���� ��������
��������

�������	��������	
�����

��������	����������	 ����

In [8] a technique to verify some architectural patterns

is presented. Specification of software connectors,

components, ports and interactions can be thoroughly

described by employing a domain specific language.

Verification is achieved by introducing a formal and

automatic translation to a theorem prover tool. All the

specifications follow an operational approach while our

technique is based on a declarative perspective.

In [9-10] some modern patterns for embedded and

cloud computing patterns are introduced. This kind of

work presenting modern challenges for software

architectural patterns is clearly an inspiration for others

following this line of research. However, in most cases

patterns are not formally described. Besides the

specification of the pattern, our approach also offers the

possibility to formally verify them by employing a model

checker tool [25].

Some other approaches presents novel ADL’s to shape

the behavior of software architectural patterns [19,26-27].

We believe the graphical nature of FVS, the flexibility and

expressive power of its notations plus the possibility of

introducing verification tasks and synthesis of behavior

makes FVS a distinguishable approach.

 Regarding future work we would like to undertake

an empiric study to compare the flexibility and expressive

power of FVS against other ADL’s. We would also like to

compare performance issues against other approaches

verifying architectural specifications like [7-8]. Finally, we

also would like to combine FVS with other frameworks,

including static architectural analyzers like [28] as well as

dynamic analyzers such as [29].

6. Conclusions

In this work we propose FVS as an architectural

description language to denote, explore and verify

architectural behavior. To validate our proposal we

explore the topic of architectural patterns which subsume

typical solutions including the interaction of complex

components and connectors. In our experimentation we

include widely known patterns such as publish/subscribe

or blackboard as well other modern patterns in new

domains such as embedded software and distributed and

cloud computing architectures aiming to cope with new

challenges. All of these patterns were modeled and

specified in FVS, showing the flexibility and expressive

power of our notation. In addition, we were able to

formally verify some pattern in a concrete case of study

employing a model checker tool.

7. Referencias

 [1] Shaw, Mary, and David Garlan. Software architecture. Vol.

101. Englewood Cliffs: prentice Hall, 1996.

[2] Perry, D. E., & Wolf, A. L. (1992). Foundations for the study

of software architecture. ACM SIGSOFT Software

engineering notes, 17(4), 40-52.

[3] Medvidovic, N., & Taylor, R. N. (2010, May). Software

architecture: foundations, theory, and practice. In 2010

ACM/IEEE 32nd International Conference on Software

Engineering (Vol. 2, pp. 471-472). IEEE.

[4] Farshidi, S., Jansen, S., & van der Werf, J. M. (2020).

Capturing software architecture knowledge for pattern-driven

design. Journal of Systems and Software, 110714.

[5] Bozhukha, L., & Beloborodko, O. (2019). SELECTING THE

STRATEGY FOR DESIGNING THE SOFTWARE

ARCHITECTURE. System technologies, 6(125), 121-126.

[6] Chondamrongkul, N., Sun, J., & Warren, I. (2019, July). PAT

approach to Architecture Behavioural Verification. In SEKE

(pp. 187-252).

[7] Pelliccione, P., Inverardi, P., & Muccini, H. (2008). Charmy:

A framework for designing and verifying architectural

specifications. IEEE Transactions on Software Engineering,

35(3), 325-346.

[8] Marmsoler, D. (2018, April). Hierarchical specification and

verification of architectural design patterns. In International

Conference on Fundamental Approaches to Software

Engineering (pp. 149-168). Springer, Cham.

[9] Fehling, C., Ewald, T., Leymann, F., Pauly, M., Rütschlin, J.,

& Schumm, D. (2012, June). Capturing cloud computing

knowledge and experience in patterns. In 2012 IEEE Fifth

international conference on cloud computing (pp. 726-733).

IEEE.

[10] Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Architectural

patterns for microservices: a systematic mapping study.

SCITEPRESS.

[11] Topaloglu, N. Y., & Capilla, R. (2004, September).

Modeling the variability of web services from a pattern point

of view. In European Conference on Web Services (pp. 128-

138). Springer, Berlin, Heidelberg.

[12] Eloranta, V. P., Hartikainen, V. M., Leppänen, M.,

Reijonen, V., Haikala, I., Koskimies, K., & Mikkonen, T.

(2009). Patterns for distributed embedded control system

software architecture. Tampere University of Technology.

Report, 2.

[13] Pahl, C., & Barrett, R. (2010). Pattern-based software

architecture for service-oriented software systems. e-

Informatica Software Engineering Journal.

[14] Gamma, E. (1995). Design patterns: elements of reusable

object-oriented software. Pearson Education India.

[15] Autili, M., Inverardi, P., & Pelliccione, P. A scenario based

notation for specifying temporal properties. In Proceedings of

the SCESM workshop s (pp. 21-28). ACM. (2006).

[16] Cavalcante, E., Oquendo, F., & Batista, T. (2014, August).

Architecture-based code generation: from �-ADL

architecture descriptions to implementations in the Go

language. In European Conference on Software Architecture

(pp. 130-145). Springer, Cham.

[17] Cuenot, P., Chen, D., Gérard, S., Lönn, H., Reiser, M. O.,

Servat, D., ... & Weber, M. (2007). Towards improving

dependability of automotive systems by using the EAST-

ADL architecture description language. In Architecting

dependable systems IV (pp. 39-65). Springer, Berlin,

Heidelberg.

[18] Haider, U., McGregor, J. D., & Bashroush, R. (2019). The

ALI Architecture Description Language. ACM SIGSOFT

Software Engineering Notes, 43(4), 52-52.

[19] Velte, T., Velte, A., & Elsenpeter, R. (2009). Cloud

computing, a practical approach. McGraw-Hill, Inc..

[20] Tanenbaum, A. S., & Van Steen, M. (2007). Distributed

systems: principles and paradigms. Prentice-Hall.

[21] Tierney, B., Johnston, W., Lee, J., & Thompson, M. (2000).

A data intensive distributed computing architecture for “grid”

applications. Future Generation Computer Systems, 16(5),

473-481.

[22] Shaw, M., & Clements, P. (1996). How Should Patterns

Influence Architecture Description Languages?. Working

paper for DARPA EDCS community.

[23] Fernando Asteasuain and Víctor Braberman. Declaratively

building behavior by means of scenario clauses.

Requirements Engineering, 22(2):239-274, 2017.

doi:10.1007/s00766-015-0242-2

[24] Fernando Asteasuain – Francisco Tarulla. Modelado de

Comportamiento de Conectores de Software a través de

Lenguajes Declarativos. CONAIISI 2016.

[25] Magee, J., Kramer, J., Chatley, R., Uchitel, S., & Foster, H.

(2009). LTSA–Labelled Transition System Analyser.

[26] Zhang, X., Lee, C., & Helal, S. (2019). iPOJO flow: a

declarative service workflow architecture for ubiquitous

cloud applications. Journal of Ambient Intelligence and

Humanized Computing, 10(4), 1483-1494.

[27] Dajsuren, Y. (2019). Defining Architecture Framework for

Automotive Systems. In Automotive Systems and Software

Engineering (pp. 141-168). Springer, Cham.

[28] Santos, A., Cunha, A., & Macedo, N. (2019, February).

Static-time extraction and analysis of the ROS computation

graph. In 2019 Third IEEE International Conference on

Robotic Computing (IRC) (pp. 62-69). IEEE.

[29] Cavalcante, E., Quilbeuf, J., Traonouez, L. M., Oquendo, F.,

Batista, T., & Legay, A. (2016, November). Statistical model

checking of dynamic software architectures. In European

Conference on Software Architecture (pp. 185-200).

Springer, Cham.

[30] http://mqtt.org/ MQTT Protocol Specification

